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ABSTRACT: The classical set theory based on crisp sets is not able to deal with uncertainties which
is a common feature of various real-world problems. This problem is solved using modified forms of sets such
as fuzzy sets, Intuitionistic fuzzy sets, neutrosophic sets, soft sets and hypersoft sets and others along with
their hybrids. In this paper, a modified hybrid of soft set named Fermatean Neutrosophic Soft set (FrNSS) is
established. Basic entities of set theory including subsets, null set, universal set along with different operators
are defined. With respect to these operators, the algebraic structures as monoid, semigroup and semiring are
defined. Also, fermatean neutrosophic soft topological space and the cartesian product of fermatean neutro-
sophic soft sets and fermatean neutrosophic soft relation are defined to establish an application of this hybrid
structure to decision-making problems.

1. INTRODUCTION
Around the 1870’s, set theory was introduced as a result of Cantor and Dedekind’s efforts, [1] which

proved its worth having various real-world applications. The classical set theory based on crisp sets only
deals with absolute associateship that is, whether a member is contained in a set or not. This limitation of
associateship motivated Zadeh to introduce fuzzy sets that deal with partial associateship [2]. Fuzzy sets were
introduced in 1965, generalized by Pawlak as rough sets in 1982 [3] and by Molodstov as soft sets in 1999
[4]. These generalizations proved their worth in dealing with the uncertainties in various real-world problems
in almost every field such as engineering, economics, social sciences, environmental sciences and medical
sciences [5–8].

Fuzzy soft set [7], intuitionistic fuzzy set [9], intuitionistic fuzzy soft set [10], hesitant fuzzy set [11],
hesitant fuzzy soft set [12], picture fuzzy set [13], picture fuzzy soft set [14], hypersoft set [15], neutrosophic
soft set [16] and neutrosophic hypersoft set [17] are few variants based on generalization of truthiness (as-
sociateship), falsity (non-associateship) and hesitancy (indeterminacy). We have enlightened some scholarly
activities related to soft sets, neutrosophic sets and fermatean sets. In 2003, Maji proposed the fundamentals
of soft sets including basic entities and operators [18] and in 2009 Ali et al. established the modified operators
[19]. Later, the soft set theory evolved as Çağman and Enginoğlu proposed the soft matrix [20], Babitha and
Sunil defined relations and functions on soft sets along with their properties [21, 22] and Yang and Guo defined
closure and kernel of soft relations and soft mappings [23]. More contributions towards soft set theory were
made by different mathematicians [24–27]. While soft set theory was developing by above mentioned findings,
mathematicians tried to connect it with algebraic structures as Aktaş and Çağman established soft groups [28],
Acer defined soft rings [5] and Aslam and Qurashi connected sub algebraic structures related to soft groups
[29].

Inspired by philosophical logics (relative and absolute truthiness and falsity) and various real-world
scenarios such as game results (win, loss, tie), voting outcomes (in favour of, opposite, blank vote), num-
bers (positive, negative, neutral), answers to a straight question (yes, not applicable, no), control theory and
decision-making (making a decision, hesitating, accepting, rejecting, pending). Smarandache introduced a
tri-component set named as neutrosophic sets (knowledge of neutral wisdom) dealing with three components:
associateship, non-associateship and indeterminacy [30, 31]. Neutrosophic set theory evolved as Wang et al.
proposed single and interval valued neutrosophic sets [32, 33] and Salama and Alblowi presented Neutrosophic
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Table 1. Alreday existing structures
Set associateship Indeterminacy Non-associateship condition

value θ value ϕ value ψ
m i n

Crisp Set 0 or 1 0 0
Fuzzy Set in [0, 1] 0 0

Intuitionistic in [0, 1] 0 in [0, 1] 0 ≤ θ + ψ ≤ 1
Fuzzy Set

Pythagorean in [0, 1] 0 in [0, 1] 0 ≤ θ2 + ψ2 ≤ 1
Fuzzy Set
Fermatean in [0, 1] 0 in [0, 1] 0 ≤ θ3 + ψ3 ≤ 1
Fuzzy Set

Neutrosophic Set in [0, 1] in [0, 1] in [0, 1] 0 ≤ θ + ϕ+ ψ ≤ 3

Intuitionistic in [0, 1] in [0, 1] in [0, 1] 0 ≤ θ + ψ ≤ 1
Neutrosophic Set 0 ≤ θ + ϕ+ ψ ≤ 2

Pythagorean in [0, 1] in [0, 1] in [0, 1] 0 ≤ θ2 + ψ2 ≤ 1
Neutrosophic Set 0 ≤ θ2 + ϕ2 + ψ2 ≤ 2

Fermatean in [0, 1] in [0, 1] in [0, 1] 0 ≤ θ3 + ψ3 ≤ 1
Neutrosophic Set 0 ≤ θ3 + ϕ3 + ψ3 ≤ 2

topological spaces [34]. Georgiou introduced soft topological spaces [35] and Bera and Mahapatra introduced
neutrosophic soft topological spaces [36]. Various mathematical entities were established relative to neutro-
sophic set as measure and integral [37], lattices [38], vector spaces [39], continuous function [40], entropy
[41], group and subgroup [42], soft ring and soft field [43]. Mathematicians also discussed various applica-
tions of neutrosophic techniques including image processing [44], medical diagnosis [45, 46] and multi-criteria
decision-making [47–49] using similarity measures, neutrosophic logic and hypersoft graphs [50]. Senapati and
Yager introduced fermatean fuzzy set [51] to deal with the limitations of associateship and non-associateship in
intuitionistic fuzzy and pythagorean fuzzy sets. It opened a new horizon for researchers as Broumi et al. applied
complex fermatean neutrosophic graphs to decision-making [52], Bilgin et al. introduced fermatean neutro-
sophic topological spaces [53] and Salsabeela and John discussed TOPSIS techniques on fermatean fuzzy soft
sets [54].
This paper presents the fundamentals of a hybrid structure fermatean Neutrosophic Soft set (FrNSS) that
allows more flexible choices for associateship, non-associateship and indeterminacy. We have established its
definition, basic set theoretic entities as subset, null set, universal set, different operators and basic algebraic
structures relative to these operators. We have also defined fermatean neutrosophic soft topological space,
cartesian product, relations on FrNSS and discussed its approach to decision-making problem.

2. STRUCTURAL COMPARISON
In this section, we have presented fermatean neutrosophic set as a generalization of some basic hy-

brids. Table 1 shows how different values of associateship, indeterminacy and non-associateship correspond to
other already existing hybrid structures and some basic sets. It is to be noted that fermatean neutrosophic set
is not a special case of q-rung orthopair fuzzy set with q=3, as in q-rung orthopair fuzzy set only associateship
and non-associateship (dependent) are discussed while in case of fermatean neutrosophic set, associateship,
non-associateship (dependent) and indeterminacy (independent) are discussed. Pythagorean neutrosophic set
is generalization of intuitionistic neutrosophic set and fermatean neutrosophic set is a generalization of both
pythagorean neutrosophic and Intuitionistic neutrosophic sets.

3. MOTIVATION
In this section a few real-world scenerios that neutrosophic set deals with, are presented. The hybrid

structure FrNSS proves its worth being able to deal with more options for associateship, non-associateship
and indeterminacy as compared to itutionistic and pythagorean neutrosophic sets.
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3.1. General Example
Problem: During the journey from place A to place B, a truck is loaded with various items, including

tables of three different sizes (large (table 1), medium (table 2) and small (table 3)), a sofa set with three
different sizes (three-seater (sofa 1), two-seater (sofa 2) and one-seater (sofa 3)), a cupboard and two boxes.
Table 2 is positioned on top of table 1 and table 3 is placed underneath table 1. Sofa 3 is placed on top of sofa 1
while sofa 2 is inclined against sofa 1 forming a slopy surface. Now let’s express the volume covered by each
item on the truck throughout the entire journey.
Solution: In this particular problem, the coverage of volume by each item is not absolute. For example table 2
does not cover the volume of the truck even though it is present in the truck. Sofa 2 formimg an inclined plane
with sofa 1 covers approximately 50% to 60% of the area (associateship) while the remaining 50% to 40%
does not cover the volume of the truck (non-associateship). Moreover, the movement of the truck introduces
frequent changes in these values of associateship and non-associateship. This problem cannot be effectively
addressed using crisp sets. To analyse and discuss this problem, we require a neutrosophic soft structure that
accounts for the dependencies between associateship and non-associateship. The most suitable hybrid structure
for this problem is the FrNSS which allows a wide range of possible values for associateship, indeterminacy,
and non-membership. e.g if associateship is 0.9 (90%) and non-associateship is 0.5 (50%) then 0.9 + 0.5 > 1,
so intuitionistic neutrosophic soft set does not support it. Also 0.92 + 0.52 > 1 so pythagorean neutrosophic
soft set does not support it but 0.93 + 0.53 < 1 so fermatean neutrosophic soft set will support it.

3.2. Neutrosophy in Quantum Mechanics
Both wave and particle are characteristics of photons [55]. Independently, neither the photon’s particle

character nor its wave nature can account for the phenomenon of light. The particle nature of photons elucidates
their straight-line motion, while their wave nature accounts for phenomenon like reflection.
The neutrosophic nature of sets finds its most valuable application in describing the quantum state of photons,
which exists in a superposition, manifesting as two distinct states. This complex situation can be effectively
represented using the fermatean neutrosophic set which encompasses a wide range of potential values for
associateship, non-associateship, and indeterminacy.

3.3. Neutrosophy in particle physics
Supersymmetry (SUSY) is a theory that proposes the existence of a connection between bosons (par-

ticles with zero or integral spin) and fermions (particles with half-integer spin). It postulates that these particles
can be organised into the same doublet and introduces a supercharge operator, denoted as Q, which can trans-
form fermions into bosons and vice versa.
In order to show an unbroken symmetry, fermions and bosons can be conceptualised as Neutrosophic states
possessing opposing properties such as spin and statistics. The SUSY doublet serves as a neutral term that
accommodates both types of particles within the framework of supersymmetry. [56]

3.4. Neutrosophy and accelerated expansion of universe
The Nobel Prize in Physics was awarded in 2011 for the groundbreaking discovery of the universe’s

accelerated expansion. This phenomenon can be effectively expressed using neutrosophy which encompasses
three states, expansion, contraction, and a stable state characterised by neither expansion nor contraction. Neu-
trosophy provides a suitable framework to capture the complex dynamics of the universe’s evolution [57].
Researchers have discussed many real-world applications of neutrosphy, a few of which are mentioned above.
An important point to notice is that the dual nature of photons is interdependent, so neutrosophic structure
cannot deal with it and we need to develop a hybrid neutrosophic structure to discuss such scientific scenar-
ios. To have an extended domain, we have developed fermatean neutrosophic soft set which is an extension of
intuitionistic and pythagorean neutrosophic structures.

4. PRELIMINARIES
In order to comprehend the paper’s main findings, some basic definitions, mainly following [53], [58]

and [36] are presented in this section. Let’s define few notations that we have used for this paper. D,P(D),
P(D)FrN and P(D)N are used to represent the domain of discourse, collection of all the classical subsets of
D, fermatean neutrosophic subsets of D and neutrosophic subsets of D, respectively. P1 and P2 are used to
represent the subsets of set of parameters P . θX , ϕX , ψX : D → [0, 1] where θX(s̃), ϕX(s̃) and ψX(s̃) are
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representing associateship, indeterminacy and non-associateship levels of s̃ ∈ D relative to the set X .
The collection of possible values for fermatean neutrosophy associateship and non-associateship levels is a
super set of the collections of pythagorean as well as intuitionistic associateship and non-associateship levels.

4.1. Fermatean Fuzzy Set
ξFr = {⟨s̃, (θξ(s̃), ψξ(s̃))⟩ : s̃ ∈ D, 0 ≤ θ3ξ(s̃) + ψ3

ξ (s̃) ≤ 1} is representing a fermatean fuzzy set
over the domain of discourse D.

4.2. Neutrosophic Set
ξN = {⟨s̃, (θξ(s̃), ϕξ(s̃), ψξ(s̃))⟩ : s̃ ∈ D, 0 ≤ θξ(s̃) + ϕξ(s̃) + ψξ(s̃) ≤ 3} is representing a

neutrosophic set over the domain of discourse D.

4.3. Soft Set
The pair (f ∗, P1) = {(ϵ̂, f ∗(ϵ̂)) : ϵ̂ ∈ P1, f

∗ : P1 → P(D)} is representing a soft set.

4.4. Fermatean Neutrosophic Set
ξFrN = {⟨s̃, (θξ(s̃), ϕξ(s̃), ψξ(s̃))⟩, 0 ≤ θ3ξ(s̃)+ψ

3
ξ (s̃) ≤ 1, 0 ≤ θ3ξ(s̃)+ϕ

3
ξ(s̃)+ψ

3
ξ (s̃) ≤ 2 : s̃ ∈ D}

is representing a fermatean neutrosophic set over the domain of discourse D.

4.5. Neutrosophic Soft Set
The pair (f ∗, P1) = {(ϵ̂, f ∗(ϵ̂)) : ϵ̂ ∈ P1, f

∗ : P1 → P(D)N} is representing a neutrosophic soft set.
More precisely,
ξNS,P1 =
{(ϵ̂, {⟨s̃, (θP1,ϵ̂(s̃), ϕP1,ϵ̂(s̃), ψP1,ϵ̂(s̃))⟩ , 0 ≤ θP1,ϵ̂(s̃) + ϕP1,ϵ̂(s̃) + ψP1,ϵ̂(s̃) ≤ 3 : s̃ ∈ D}) : ϵ̂ ∈ P1}

4.6. Neutrosophic Soft Subset
A neutrosophic soft set ξNS,P1

=
{(ϵ̂, {⟨s̃, (θP1,ϵ̂(s̃), ϕP1,ϵ̂(s̃), ψP1,ϵ̂(s̃))⟩ , 0 ≤ θP1,ϵ̂(s̃) + ϕP1,ϵ̂(s̃) + ψP1,ϵ̂(s̃) ≤ 3 : s̃ ∈ D}) : ϵ̂ ∈ P1} is consid-
ered to be a neutrosophic soft subset of ξNS,P2 =
{(ϵ̂, {⟨s̃, (θP2,ϵ̂(s̃), ϕP2,ϵ̂(s̃), ψP2,ϵ̂(s̃))⟩ , 0 ≤ θP2,ϵ̂(s̃) + ϕP2,ϵ̂(s̃) + ψP2,ϵ̂(s̃) ≤ 3 : s̃ ∈ D}) : ϵ̂ ∈ P2} if (i)P1 ⊆
P2, (ii) θP1,ϵ̂(s̃) ≤ θP2,ϵ̂(s̃), ϕP1,ϵ̂(s̃) ≤ ϕP2,ϵ̂(s̃) and ψP1,ϵ̂(s̃) ≥ ψP1,ϵ̂(s̃), for all s̃ ∈ D, ϵ̂ ∈ P1.

4.7. Neutrosophic Soft Twisted Subset
A neutrosophic soft set ξNS,P1 =

{(ϵ̂, {⟨s̃, (θP1,ϵ̂(s̃), ϕP1,ϵ̂(s̃), ψP1,ϵ̂(s̃))⟩ , 0 ≤ θP1,ϵ̂(s̃) + ϕP1,ϵ̂(s̃) + ψP1,ϵ̂(s̃) ≤ 3 : s̃ ∈ D}) : ϵ̂ ∈ P1} is consid-
ered to be a neutrosophic soft twisted subset of ξNS,P2

=
{(ϵ̂, {⟨s̃, (θP2,ϵ̂(s̃), ϕP2,ϵ̂(s̃), ψP2,ϵ̂(s̃))⟩ , 0 ≤ θP2,ϵ̂(s̃) + ϕP2,ϵ̂(s̃) + ψP2,ϵ̂(s̃) ≤ 3 : s̃ ∈ D}) : ϵ̂ ∈ P2} if (i)P1 ⊆
P2, (ii) θP1,ϵ̂(s̃) ≥ θP2,ϵ̂(s̃), ϕP1,ϵ̂(s̃) ≥ ϕP2,ϵ̂(s̃) and ψP1,ϵ̂(s̃) ≤ ψP1,ϵ̂(s̃), for all s̃ ∈ D, ϵ̂ ∈ P1.

4.8. Relative Null and Relative Whole Neutrosophic Soft Set
A neutrosophic soft set, ξNS,P1

= {(ϵ̂, {⟨s̃, (0, 0, 1)⟩ : s̃ ∈ D}) : ϵ̂ ∈ P1} is named as relative
null neutrosophic soft set and ξNS,P1

= {(ϵ̂, {⟨s̃, (1, 1, 0)⟩ : s̃ ∈ D}) : ϵ̂ ∈ P1} is named as relative whole
neutrosophic soft set.

4.9. Operations on Neutrosophic Soft Sets
Following are few operations defined on neutrosophic soft sets,

(i) Complement: ξcNS,P1
= {(ϵ̂, {⟨s̃, (ψP1,ϵ̂(s̃), ϕP1,ϵ̂(s̃), θP1,ϵ̂(s̃))⟩ : s̃ ∈ D}) : ϵ̂ ∈ P1}.

(ii) Restricted unoin:
ξNS,P1 ∪R ξNS,P2 = ξNS,P3 =
{(ϵ̂, {⟨s̃, (max{θP1,ϵ̂(s̃), θP2,ϵ̂(s̃)},max{ϕP1,ϵ̂(s̃), ϕP2,ϵ̂(s̃)},min{ψP1,ϵ̂(s̃), ψP2,ϵ̂(s̃)})⟩ : s̃ ∈ D}) : ϵ̂ ∈ P3}, P3 =
P1 ∩ P2.
(iii) Restricted intersection:
ξNS,P1

∩R ξNS,P2
= ξNS,P3

=
{(ϵ̂, {⟨s̃, (min{θP1,ϵ̂(s̃), θP2,ϵ̂(s̃)},min{ϕP1,ϵ̂(s̃), ϕP2,ϵ̂(s̃)},max{ψP1,ϵ̂(s̃), ψP2,ϵ̂(s̃)})⟩ : s̃ ∈ D}) : ϵ̂ ∈ P3}, P3 =
P1 ∩ P2.
(iv) Extended unoin and intersection: ξNS,P3

=
{(ϵ̂, {⟨s̃, (θP3,ϵ̂(s̃), ϕP3,ϵ̂(s̃), ψP3,ϵ̂(s̃))⟩ : s̃ ∈ D}) : ϵ̂ ∈ P3}, P3 = P1∪P2, where associateship, indeterminacy
and nonassociateship values are mentioned in table 2.
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Table 2. associateship, indeterminacy and nonassociateship function values for extended union and
intersection

partition of associateship Indeterminacy Non-associateship
P3 = P1 ∪ P2 value value value

P1 ∪E P2

ϵ̂ ∈ P1 \ P2 θP1,ϵ̂ ϕP1,ϵ̂ ψP1,ϵ̂

ϵ̂ ∈ P2 \ P1 θP2,ϵ̂ ϕP2,ϵ̂ ψP2,ϵ̂

ϵ̂ ∈ P1 ∩ P2 max{θP1,ϵ̂, θP2,ϵ̂} max{ϕP1,ϵ̂, ϕP2,ϵ̂} min{ψP1,ϵ̂, ψP2,ϵ̂}
P1 ∩E P2

ϵ̂ ∈ P1 \ P2 θP1,ϵ̂ ϕP1,ϵ̂ ψP1,ϵ̂

ϵ̂ ∈ P2 \ P1 θP2,ϵ̂ ϕP2,ϵ̂ ψP2,ϵ̂

ϵ̂ ∈ P1 ∩ P2 min{θP1,ϵ̂, θP2,ϵ̂} min{ϕP1,ϵ̂, ϕP2,ϵ̂} max{ψP1,ϵ̂, ψP2,ϵ̂}

Table 3. Tabular form of FrNSS XFrNS,P1

XFrNS,P1 s̃1 s̃2 s̃3
ϵ̂1 (0.8, 0.4, 0.1) (0.9, 0.7, 0.3) (0.1, 0.2, 0.3)
ϵ̂2 (0.6, 0.2, 0.4) (0.8, 0.7, 0.3) (0.1, 0.5, 0.7)

4.10. Neutrosophic Soft Topological space
Let NSS(D, P1) be a collection of all neutrosophic soft sets over D with respect to the set of param-

eters P1 and τnsp1
be a subset of NSS(D, P1). τnsp1

is named as neutrosophic soft topology on (D, P1) if (i)
relative null and relative whole neutrosophic soft sets belong to τnsp1

, (ii) the intersection of finite number of
neutrosophic soft sets in τnsp1

also belongs to τnsp1
, (iii) the union of any number of neutrosophic soft sets in

τnsp1 also belongs to τnsp1 .
The triplet (D, P1, τnsp1) is named as neutrosophic soft topological space.

4.11. Neutrosophic Soft Cartesian Product
The cartesian product ξNS,P1 × ξNS,P2 is a neutrosophic soft set defined by,

ξNS,P1 × ξNS,P2 = ξNS,P3

= {(ϵ̂, ϵ̂′), ⟨s̃, (min{θP1,ϵ̂(s̃), θP2,ϵ̂′
(s̃)},min{ϕP1,ϵ̂(s̃), ϕP2,ϵ̂′

(s̃)},max{ψP1,ϵ̂(s̃), ψP2,ϵ̂′
(s̃)}) : s̃ ∈ D⟩ : (ϵ̂, ϵ̂′) ∈

P1 × P2}

5. FERMATEAN NEUTROSOPHIC SOFT SET
In this section, a noval hybrid is established, possessing the properties of fermatean, neutrosophic and

soft sets.

5.1. Definition
For the domain of discourse D and the collection of parameters P , define a mapping f ∗ : P1 →

P(D)FrN , where P1 is a non empty subset of P and P(D)FrN is collection of all fermatean neutrosophic
subsets of D. The fermatean neutrosophic soft set (FrNSS) is defined as,
XFrNS,P1 = (f ∗, P1) = {(ϵ̂, ⟨s̃, (θP1,ϵ̂(s̃), ϕP1,ϵ̂(s̃), ψP1,ϵ̂(s̃))⟩ : s̃ ∈ D) : ϵ̂ ∈ P1} where θP1,ϵ̂, ϕP1,ϵ̂, ψP1,ϵ̂ :
D → [0, 1] such that for all ϵ̂ ∈ D and ϵ̂ ∈ P1, 0 ≤ θ3P1,ϵ̂

(s̃) + ψ3
P1,ϵ̂

(s̃) ≤ 1 and 0 ≤ θ3P1,ϵ̂
(s̃) + ϕ3P1,ϵ̂

(s̃) +

ψ3
P1,ϵ̂

(s̃) ≤ 2.

5.1.1. Example
Let D = {s̃1, s̃2, s̃3}, P = {ϵ̂1, ϵ̂2, ..., ϵ̂5} and P1 = {ϵ̂1, ϵ̂2}. Following is an example of FrNSS,

XFrNS,P1
= {(ϵ̂1, ⟨s̃1, (0.8, 0.4, 0.1)⟩, ⟨s̃2, (0.9, 0.7, 0.3)⟩, ⟨s̃3, (0.1, 0.2, 0.3)⟩) ,

(ϵ̂2, ⟨s̃1, (0.6, 0.2, 0.4)⟩, ⟨s̃2, (0.8, 0.7, 0.3)⟩, ⟨s̃3, (0.1, 0.5, 0.7)⟩)}. Table 3 is representing the tabular form of
FrNSS.

5.2. Fermatean Neutrosophic Soft Subset
Over the same domain of discourse, A FrNSS, XFrNS,P1 is considered as a FrNS subset of

XFrNS,P2
if (i) P1 ⊆ P2, (ii) for all ϵ̂ ∈ P1 and s̃ ∈ D, θP1,ϵ̂(s̃) ≤ θP2,ϵ̂(s̃), ϕP1,ϵ̂(s̃) ≤ ϕP2,ϵ̂(s̃) and

ψP1,ϵ̂(s̃) ≥ ψP2,ϵ̂(s̃).
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Remark: Its a clear observation that the definition of classical subset does not hold here as XFrNS,P1 ⊆
FrNS

XFrNS,P2
does not imply that all the points of XFrNS,P1

are present in XFrNS,P2
.

5.2.1. Example
Consider the FrNSS XFrNS,P1

considered in example 5.1.1. and let XFrNS,P2
be another FrNSS

over the same domain of discourse given as XFrNS,P2
= {(ϵ̂1, ⟨s̃1, (0.9, 0.5, 0.1)⟩, ⟨s̃2, (0.9, 0.8, 0.1)⟩, ⟨s̃3, (0.4, 0.5, 0.2)⟩) ,

(ϵ̂2, ⟨s̃1, (0.7, 0.3, 0.2)⟩, ⟨s̃2, (0.8, 0.7, 0.2)⟩, ⟨s̃3, (0.1, 0.7, 0.4)⟩),
(ϵ̂4, ⟨s̃1, (0.5, 0.2, 0.6)⟩, ⟨s̃2, (0.7, 0.3, 0.5) >⟩, ⟨s̃3, (0.4, 0.2, 0.6)⟩)}, whereP2 = {ϵ̂1, ϵ̂2, ϵ̂4}. Clearly, XFrNS,P1

is FrNS subset of XFrNS,P2
.

5.3. Fermatean Neutrosophic Soft Twisted Subset
Over the same domain of discourse, XFrNS,P1

is considered to be aFrNS twisted subset of XFrNS,P2

if (i) P1 ⊆ P2, (ii) for all ϵ̂ ∈ P1 and s̃ ∈ D, θP1,ϵ̂(s̃) ≥ θP2,ϵ̂(s̃), ϕP1,ϵ̂(s̃) ≥ ϕP2,ϵ̂(s̃) and ψP1,ϵ̂(s̃) ≤ ψP2,ϵ̂(s̃).

5.3.1. Example
Consider the FrNSS, XFrNS,P1 in example 5.1.1. and let XFrNS,P3 =

{(ϵ̂1, ⟨s̃1, (0.5, 0.2, 0.1)⟩, ⟨s̃2, (0.7, 0.5, 0.6)⟩, ⟨s̃3, (0.1, 0.1, 0.5)⟩) ,
(ϵ̂2, ⟨s̃1, (0.4, 0.1, 0.7)⟩, ⟨s̃2, (0.5, 0.5, 0.5)⟩, ⟨s̃3, (0.1, 0.2, 0.9)⟩),
(ϵ̂3, ⟨s̃1, (0.4, 0.2, 0.3)⟩, ⟨s̃2, (0.6, 0.2, 0.1)⟩, ⟨s̃3, (0.5, 0.2, 0.5)⟩)}, whereP3 = {ϵ̂1, ϵ̂2, ϵ̂3}. Clearly, XFrNS,P1

is FrNS twisted subset of XFrNS,P3
.

5.4. Fermatean Neutrosophic Soft Equal Set
Over the same domain of discourse, two FrNSSs XFrNS,P1 and XFrNS,P2 are considered to be

FrNS equal, if either XFrNS,P1 ⊆
FrNS

XFrNS,P2 and XFrNS,P2 ⊆
FrNS

XFrNS,P1 or XFrNS,P1 ⊆̃
FrNS

XFrNS,P2

and XFrNS,P2
⊆̃

FrNS
XFrNS,P1

.

5.5. Relative Null Fermatean Neutrosophic Soft set
A FrNSS XFrNS,P1 is considered as relative null FrNSS (∅FrNS,P1 ) if for all ϵ̂ ∈ P1, s̃ ∈

D, θP1,ϵ̂(s̃) = 0 = ϕP1,ϵ̂(s̃) and ψP1,ϵ̂(s̃) = 1 that is,
∅FrNS,P1

= {(ϵ̂, ⟨s̃, (0, 0, 1)⟩ : s̃ ∈ D) : ϵ̂ ∈ P1}.

5.6. Relative whole Fermatean Neutrosophic Soft set
UFrNS,P1

= {(ϵ̂, ⟨s̃, (1, 1, 0)⟩ : s̃ ∈ D) : ϵ̂ ∈ P1}.

5.7. Absolute Null Fermatean Neutrosophic Soft set
A FrNSS XFrNS,P is considered as absolute null FrNSS (∅FrNS,P ) if for all ϵ̂ ∈ P, θP,ϵ̂(s̃) =

0 = ϕP,ϵ̂(s̃) and ψP,ϵ̂(s̃) = 1 that is,
∅FrNS,P = {(ϵ̂, ⟨s̃, (0, 0, 1)⟩ : s̃ ∈ D) : ϵ̂ ∈ P}.

5.8. Absolute whole Fermatean Neutrosophic Soft set
AFrNSS XFrNS,P is considered absolute wholeFrNSS (UFrNS,ϵ̂) if for all ϵ̂ ∈ P, s̃ ∈ D, θP,ϵ̂(s̃) =

1 = ϕP,ϵ̂(s̃) and ψP,ϵ̂(s̃) = 0 that is,
UFrNS,P = {(ϵ̂, ⟨s̃, (1, 1, 0)⟩ : s̃ ∈ D) : ϵ̂ ∈ P}.

5.9. Proposition
Let XFrNS,P1 ,XFrNS,P2 ,XFrNS,P3 be FrNSSs, then

(i) ∅FrNS,P1 ⊆
FrNS

XFrNS,P1 ,

(ii) XFrNS,P1
⊆

FrNS
UFrNS,P1

and XFrNS,P1
⊆

FrNS
UFrNS,P ,

(iii) XFrNS,P1
⊆̃

FrNS
∅FrNS,P1

and XFrNS,P1
⊆̃

FrNS
∅FrNS,P ,

(iv) UFrNS,P1
⊆̃

FrNS
ΞFrNS,P1

,

(v) XFrNS,P1 ⊆
FrNS

XFrNS,P2 and XFrNS,P2 ⊆
FrNS

XFrNS,P3 implies XFrNS,P1 ⊆
FrNS

XFrNS,P3 ,
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(vi) XFrNS,P1 ⊆̃
FrNS

XFrNS,P2 and XFrNS,P2 ⊆̃
FrNS

XFrNS,P3 implies XFrNS,P1 ⊆̃
FrNS

XFrNS,P3 ,

(vii)XFrNS,P1
=

FrNS
XFrNS,P2

and XFrNS,P2
=

FrNS
XFrNS,P3

implies XFrNS,P1
=

FrNS
XFrNS,P3

.

5.9.1. Remark
Observe that ∅FrNS,P ̸⊆

FrNS
XFrNS,P1

as P ̸⊆ P1 and hence first condition of being FrNS subset

does not hold.

5.10. Not set of set of parameters
¬P = {¬ϵ̂ : ϵ̂ ∈ P,¬ϵ̂=not ϵ̂} is representing the not set of set of parameters P .

5.11. Complement of Fermatean Neutrosophic Soft Set
The complement of a FrNSS XFrNS,P1 , denoted by Xc

FrNS,P1
is a FrNSS given as (f ∗c,¬P1)

where f ∗c : ¬P1 → P(D)FrN such that θ¬P1,¬ϵ̂ = ψP1,ϵ̂, ϕ¬P1,¬ϵ̂ = 1− ϕP1,ϵ̂ and ψ¬P1,¬ϵ̂ = θP1,ϵ̂.

5.11.1. Example
The complement of FrNSS XFrNS,P1

in example 5.1.1. is,
XFrNS,P1

= {(ϵ̂1, ⟨s̃1, (0.1, 0.6, 0.8)⟩, ⟨s̃2, (0.3, 0.3, 0.9)⟩, ⟨s̃3, (0.3, 0.8, 0.1)⟩) ,
(ϵ̂2, ⟨s̃1, (0.4, 0.8, 0.6)⟩, ⟨s̃2, (0.3, 0.3, 0.8)⟩, ⟨s̃3, (0.7, 0.5, 0.1)⟩)}.

5.12. Proposition
Let XFrNS,P1

be a FrNSS, then
(i) (Xc

FrNS,P1
)c = XFrNS,P1

,
(ii) ∅cFrNS,P1

= UFrNS,P1
,

(iii) ∅cFrNS,P = UFrNS,P ,
(iv) U c

FrNS,P1
= ∅FrNS,P1 ,

(v) U c
FrNS,P = ∅FrNS,P .

5.13. Extended Union of Fermatean Neutrosophic Soft Sets
The extended union (∪E) of two FrNSSs is a FrNSS XFrNS,P3

where P3 = P1 ∪ P2 with asso-
ciateship, indeterminacy, non-associateship for ϵ̂ ∈ P1 ∪ P2 is defined as follows,

θP3,ϵ̂, ϕP3,ϵ̂, ψP3,ϵ̂ =


θP1,ϵ̂, ϕP1,ϵ̂, ψP1,ϵ̂ if ϵ̂ ∈ P1 \ P2

θP2,ϵ̂, ϕP2,ϵ̂, ψP2,ϵ̂ if ϵ̂ ∈ P2 \ P1

max{θP1,ϵ̂, θP2,ϵ̂},max{ϕP1,ϵ̂, ϕP2,ϵ̂},min{ψP1,ϵ̂, ψP2,ϵ̂} if ϵ̂ ∈ P1 ∩ P2

5.14. Restricted Union of Fermatean Neutrosophic Soft Sets
The restricted union (∪R) of two FrNSSs is a FrNSS XFrNS,P3 where P3 = P1 ∩ P2 with

associateship, indeterminacy, non-associateship for ϵ̂ ∈ P1 ∩ P2 is defined as follows,
θP3,ϵ̂ = max{θP1,ϵ̂, θP2,ϵ̂}, ϕP3,ϵ̂ = max{ϕP1,ϵ̂, ϕP2,ϵ̂}, ψP3,ϵ̂ = min{ψP1,ϵ̂, ψP2,ϵ̂}.

5.14.1. Example
Consider the FrNSSs XFrNS,P1

and XFrNS,P2
in example 5.1.1. and 5.2.1., respectively. Then

their union will be,
XFrNS,P1∪EXFrNS,P2={(ϵ̂1, ⟨s̃1, (0.9, 0.5, 0.1)⟩, ⟨s̃2, (0.9, 0.8, 0.1)⟩, ⟨s̃3, (0.4, 0.5, 0.2)⟩), (ϵ̂2, ⟨s̃1, (0.7, 0.3, 0.2)⟩, ⟨s̃2, (0.8, 0.7, 0.2)⟩, ⟨s̃3, (0.1, 0.7, 0.4)⟩),
(ϵ̂4, ⟨s̃1, (0.5, 0.2, 0.6)⟩, ⟨s̃2, (0.7, 0.3, 0.5)⟩, ⟨s̃3, (0.4, 0.2, 0.6)⟩)}.
XFrNS,P1

∪RXFrNS,P2
={(ϵ̂1, ⟨s̃1, (0.9, 0.5, 0.1)⟩, ⟨s̃2, (0.9, 0.8, 0.1)⟩, ⟨s̃3, (0.4, 0.5, 0.2)⟩), (ϵ̂2, ⟨s̃1, (0.7, 0.3, 0.2)⟩, ⟨s̃2, (0.8, 0.7, 0.2)⟩, ⟨s̃3, (0.1, 0.7, 0.4)⟩)}.

5.14.2. Remark
It is a clear observation that for any two FrNSSs XFrNS,P1

and XFrNS,P2
,

XFrNS,P1 ∪R XFrNS,P2 ⊆
FrNS

XFrNS,P1 ∪E XFrNS,P2 .

IJMSCS
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5.15. Extended Intersection of Fermatean Neutrosophic Soft Sets
The extended intersection (∩E) of two FrNSSs is a FrNSS XFrNS,P3

where P3 = P1 ∪ P2 with
associateship, indeterminacy, non-associateship for ϵ̂ ∈ P1 ∪ P2 is defined as follows,

θP3,ϵ̂, ϕP3,ϵ̂, ψP3,ϵ̂ =


θP1,ϵ̂, ϕP1,ϵ̂, ψP1,ϵ̂ if ϵ̂ ∈ P1 \ P2

θP2,ϵ̂, ϕP2,ϵ̂, ψP2,ϵ̂ if ϵ̂ ∈ P2 \ P1

min{θP1,ϵ̂, θP2,ϵ̂},min{ϕP1,ϵ̂, ϕP2,ϵ̂},max{ψP1,ϵ̂, ψP2,ϵ̂} if ϵ̂ ∈ P1 ∩ P2

5.16. Restricted intersection of Fermatean Neutrosophic Soft Sets
The restricted intersection (∩R) of two FrNSSs is a FrNSS XFrNS,P3

where P3 = P1 ∩ P2 with
associateship, indeterminacy, non-associateship ϵ̂ ∈ P1 ∩ P2 is defined as follows
θP3,ϵ̂ = min{θP1,ϵ̂, θP2,ϵ̂}, ϕP3,ϵ̂ = min{ϕP1,ϵ̂, ϕP2,ϵ̂}, ψP3,ϵ̂ = max{ψP1,ϵ̂, ψP2,ϵ̂}.

5.16.1. Example
Consider the FrNSSs XFrNS,P1 and XFrNS,P2 in example 5.1.1. and 5.2.1., respectively. Then

their intersection will be,
XFrNS,P1

∩EXFrNS,P2
={(ϵ̂1, ⟨s̃1, (0.8, 0.4, 0.1)⟩, ⟨s̃2, (0.9, 0.7, 0.3)⟩, ⟨s̃3, (0.1, 0.2, 0.3)⟩), (ϵ̂2, ⟨s̃1, (0.6, 0.2, 0.4)⟩, ⟨s̃2, (0.8, 0.7, 0.3)⟩, ⟨s̃3, (0.1, 0.5, 0.7)⟩),

(ϵ̂4, ⟨s̃1, (0.5, 0.2, 0.6)⟩, ⟨s̃2, (0.7, 0.3, 0.5)⟩, ⟨s̃3, (0.4, 0.2, 0.6)⟩)}.
XFrNS,P1

∩RXFrNS,P2
={(ϵ̂1, ⟨s̃1, (0.8, 0.4, 0.1)⟩, ⟨s̃2, (0.9, 0.7, 0.3)⟩, ⟨s̃3, (0.1, 0.2, 0.3)⟩), (ϵ̂2, ⟨s̃1, (0.6, 0.2, 0.4)⟩, ⟨s̃2, (0.8, 0.7, 0.3)⟩, ⟨s̃3, (0.1, 0.5, 0.7)⟩)}.

5.16.2. Remark
It is a clear observation that for any two FrNSSs XFrNS,P1

and XFrNS,P2
,

XFrNS,P1
∩R XFrNS,P2

⊆
FrNS

XFrNS,P1
∩E XFrNS,P2

.

5.17. Proposition
Let XFrNS,P1

and XFrNS,P2
be two FrNSSs, then

(i) XFrNS,P1
∩R XFrNS,P2

⊆
FrNS

XFrNS,P1
,XFrNS,P2

,

(ii) XFrNS,P1
,XFrNS,P2

⊆̃
FrNS

XFrNS,P1
∩E XFrNS,P2

,

(iii) XFrNS,P1 ∪R XFrNS,P2 ⊆̃
FrNS

XFrNS,P1 ,XFrNS,P2 ,

(iv) XFrNS,P1
,XFrNS,P2

⊆
FrNS

XFrNS,P1
∪E XFrNS,P2

,

(v) XFrNS,P1
∩E XFrNS,P2

⊆
FrNS

XFrNS,P1
∪E XFrNS,P2

,

(vi) XFrNS,P1 ∩R XFrNS,P2 ⊆
FrNS

XFrNS,P1 ∪R XFrNS,P2 ,

(vii) XFrNS,P1 ∩R ∅FrNS,P1 = ∅FrNS,P1 ,
(viii) XFrNS,P1 ∩E ∅FrNS,P = ∅FrNS,P ,
(ix) XFrNS,P1

∪R UFrNS,P1
= UFrNS,P1

,
(x) XFrNS,P1

∪E UFrNS,P = UFrNS,P ,
(xi) XFrNS,P ∩R UFrNS,P = XFrNS,P ,
(xii) XFrNS,P ∩E UFrNS,P = XFrNS,P ,
(xiii) XFrNS,P ∪E ∅FrNS,P = XFrNS,P ,
(xiv) XFrNS,P ∪R ∅FrNS,P = XFrNS,P ,
(xv) XFrNS,P1

⊆
FrNS

XFrNS,P2
=⇒ XFrNS,P1

∩R XFrNS,P2
= XFrNS,P1

,

(xvi) XFrNS,P1
⊆

FrNS
XFrNS,P2

=⇒ XFrNS,P1
∪E XFrNS,P2

= XFrNS,P2
,

(xvii) (XFrNS,P1
∗ XFrNS,P2

)
c
= Xc

FrNS,P1
∗̂ Xc

FrNS,P2
, where ∗, ∗̂ = ∪R,∪E ,∩R,∩E , (De Morgan’s law)

(xviii) XFrNS,P1
∗ (XFrNS,P2

∗̂XFrNS,P3
) = (XFrNS,P1

∗XFrNS,P2
)∗̂(XFrNS,P1

∗XFrNS,P2
), where ∗, ∗̂ =

∪R,∪E ,∩R,∩E . (Distributive law)

6. ALGEBRAIC STRUCTURES
Algebraic structure is a set along with some operation/s or function satisfying a set of axioms. For

example semi group, group, ring, field, vector space, metric space and normed space etc.
A semigroup under a binary operation ∗ is an algebraic structure satisfying closure and associative property
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Table 4. Nomenclature for algebraic structures
Notation Algebraic sructure(
P

FrNS
(D)P , ∗

)
Semigroup(

P
FrNS

(D)P , ∗
)

Monoid(
P

FrNS
(D)P , ∗, ∗̃

)
Semiring

Table 5. Semigroups and Subsemigroups
semigroup subsemigroups(
P

FrNS
(D)P ,∪E

) (
P

FrNS
(D)P1 ,∪E

)
(

P
FrNS

(D)P ,∪R

) (
P

FrNS
(D)P1 ,∪R

)
(

P
FrNS

(D)P ,∩E

) (
P

FrNS
(D)P1 ,∩E

)
(

P
FrNS

(D)P ,∩R

) (
P

FrNS
(D)P1 ,∩R

)

under ∗, while monoid is a semigroup with identity element under ∗ and semiring under ∗, ∗̂ is the algebraic
structure having following properties,
(i) commutative monoid under ∗, (ii) monoid under ∗̂, (iii) distributive laws hold, (iv) operating ∗̂ to identity
element under ∗ and any element of considered set turns back to identity element.

Let P
FrNS

(D)P and P
FrNS

(D)P1
be the collections of FrNSSs over the domain D associated with set

of parameters P and a subset P1 of P , respectively. The algebraic structures associated with ∩E ,∩R,∪E and
∪R are established in tables 5, 6, 7. Table 4 is representing the nomenclature for defined algebraic structures.

7. FERMATEAN NEUTROSOPHIC SOFT TOPOLOGICAL SPACE
In this section, fermatean neutrosophic soft topological space (FrNSTS) is established defining the

fermatean neutrosophic soft topology (FrNST ).

7.1. Definition

Let FrNSS(D, P1) be a collection of all FrNSSs over the domain of discourse D and set of pa-
rameters P1. A subset τfrnsp1 = {XiFrNS,P1 : i ∈ I} of FrNSS(D, P1) is named as FrNST if following
axioms are satisfied,
(i) ∅FrNS,P1

, UFrNS,P1
∈ τfrnsp1

,
(ii) for a finite subset I ′ of index set I , if XiFrNS,P1

∈ τfrnsp1
for i ∈ I ′ then ∩

i∈I′
XiFrNS,P1

∈ τfrnsp1

that is the intersection of finite number of FrNSS in τfrnsp1
also belongs to τfrnsp1

,
(iii) if XiFrNS,P1

∈ τfrnsp1
for i ∈ I then ∪

i∈I
XiFrNS,P1

∈ τfrnsp1

that is the union of any number of FrNSS in τfrnsp1
also belongs to τfrnsp1

.
The triplet (D, P1, τfrnsp1) is named as FrNSTS.

Table 6. Commutative monoids
Monoid Identity Element(

P
FrNS

(D)P ,∪E

)
∅FrNS,P(

P
FrNS

(D)P ,∪R

)
∅FrNS,P(

P
FrNS

(D)P ,∩E

)
UFrNS,P(

P
FrNS

(D)P ,∩R

)
UFrNS,P
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Table 7. Semirings
Semiring (commutative, idempotent) for any XFrNS,P ∈ P

FrNS
(D)P(

P
FrNS

(D)P ,∪E ,∩E

)
XFrNS,P ∩E ∅FrNS,P = ∅FrNS,P(

P
FrNS

(D)P ,∪E ,∩R

)
XFrNS,P ∩R ∅FrNS,P = ∅FrNS,P(

P
FrNS

(D)P ,∩E ,∪R

)
XFrNS,P ∪R UFrNS,P = UFrNS,P(

P
FrNS

(D)P ,∩E ,∪E

)
XFrNS,P ∪E UFrNS,P = UFrNS,P(

P
FrNS

(D)P ,∩R,∪R

)
XFrNS,P ∪R UFrNS,P = UFrNS,P(

P
FrNS

(D)P ,∩R,∪E

)
XFrNS,P ∪E UFrNS,P = UFrNS,P(

P
FrNS

(D)P ,∪R,∩R

)
XFrNS,P ∩R ∅FrNS,P = ∅FrNS,P(

P
FrNS

(D)P ,∪R,∩E

)
XFrNS,P ∩E ∅FrNS,P = ∅FrNS,P

7.1.1. Example
Let D = {s̃1, s̃2, s̃3}, P = {ϵ̂1, ϵ̂2, ..., ϵ̂5} and P1 = {ϵ̂1, ϵ̂2}. Let FrNSS(D, P1) be a collection of

all FrNSS over the domain of discourse D and set of parameters P1. Then (D, P1, τfrnsp1
) is a FrNSTS

with FrNST , τfrnsp1
= {∅FrNS,P1

, UFrNS,P1
,X1FrNS,P1

,X2FrNS,P1
,X3FrNS,P1

,X4FrNS,P1
}. Here

X1FrNS,P1
= {(ϵ̂1, ⟨s̃1, (0.8, 0.4, 0.1)⟩, ⟨s̃2, (0.9, 0.7, 0.3)⟩, ⟨s̃3, (0.1, 0.2, 0.3)⟩) ,

(ϵ̂2, ⟨s̃1, (0.6, 0.2, 0.4)⟩, ⟨s̃2, (0.8, 0.7, 0.3)⟩, ⟨s̃3, (0.1, 0.5, 0.7)⟩)},
X2FrNS,P1 = {(ϵ̂1, ⟨s̃1, (0.6, 0.1, 0.9)⟩, ⟨s̃2, (0.7, 0.6, 0.8)⟩, ⟨s̃3, (0.9, 0.2, 0.3)⟩) ,
(ϵ̂2, ⟨s̃1, (0.8, 0.5, 0.6)⟩, ⟨s̃2, (0.7, 0.5, 0.6)⟩, ⟨s̃3, (0.4, 0.6, 0.5)⟩)},
X3FrNS,P1

= {(ϵ̂1, ⟨s̃1, (0.6, 0.1, 0.9)⟩, ⟨s̃2, (0.7, 0.6, 0.8)⟩, ⟨s̃3, (0.1, 0.2, 0.3)⟩) ,
(ϵ̂2, ⟨s̃1, (0.6, 0.2, 0.6)⟩, ⟨s̃2, (0.7, 0.5, 0.6)⟩, ⟨s̃3, (0.1, 0.5, 0.7)⟩)},
X4FrNS,P1 = {(ϵ̂1, ⟨s̃1, (0.8, 0.4, 0.1)⟩, ⟨s̃2, (0.9, 0.7, 0.3)⟩, ⟨s̃3, (0.9, 0.2, 0.3)⟩) ,
(ϵ̂2, ⟨s̃1, (0.8, 0.5, 0.4)⟩, ⟨s̃2, (0.8, 0.7, 0.3)⟩, ⟨s̃3, (0.4, 0.6, 0.5)⟩)}.
Clearly, all axioms of FrNST are satisfied.
(i) ∅FrNS,P1

, UFrNS,P1
∈ τfrnsp1

,
(ii) Intersection of all possible (non-trivial) finite collections of elements of τfrnsp1

is in τfrnsp1
as follows,

for all i = 1, 2, 3, 4, ∅FrNS,P1∩XiFrNS,P1 = ∅FrNS,P1 andUFrNS,P1∩XiFrNS,P1 = XiFrNS,P1 . X1FrNS,P1∩X2FrNS,P1 =
X3FrNS,P1 , X1FrNS,P1∩X3FrNS,P1 = X3FrNS,P1 , X1FrNS,P1∩X4FrNS,P1 = X1FrNS,P1 , X2FrNS,P1∩X3FrNS,P1 =
X3FrNS,P1

, X2FrNS,P1
∩X4FrNS,P1

= X2FrNS,P1
and X3FrNS,P1

∩X4FrNS,P1
= X3FrNS,P1

, X1FrNS,P1
∩X2FrNS,P1

∩X3FrNS,P1
=

X3FrNS,P1
,

X1FrNS,P1
∩ X2FrNS,P1

∩ X4FrNS,P1
= X3FrNS,P1

,
X1FrNS,P1 ∩ X3FrNS,P1 ∩ X4FrNS,P1 = X3FrNS,P1 , X2FrNS,P1 ∩ X3FrNS,P1 ∩ X4FrNS,P1 = X3FrNS,P1 ,
X1FrNS,P1 ∩ X2FrNS,P1 ∩ X3FrNS,P1 ∩ X4FrNS,P1 = X3FrNS,P1 .
(iii) Union of all possible (non-trivial) collections of elements of τfrnsp1

is in τfrnsp1
as shown,

for all i = 1, 2, 3, 4, ∅FrNS,P1
∪ XiFrNS,P1

= XiFrNS,P1
and UFrNS,P1

∪ XiFrNS,P1
= UFrNS,P1

.
X1FrNS,P1

∪ X2FrNS,P1
= X4FrNS,P1

, X1FrNS,P1
∪ X3FrNS,P1

= X1FrNS,P1
, X1FrNS,P1

∪ X4FrNS,P1
=

X4FrNS,P1 , X2FrNS,P1∪X3FrNS,P1 = X2FrNS,P1 , X2FrNS,P1∪X4FrNS,P1 = X4FrNS,P1 and X3FrNS,P1∪X4FrNS,P1 =
X4FrNS,P1 , X1FrNS,P1 ∪ X2FrNS,P1 ∪ X3FrNS,P1 = X4FrNS,P1 ,
X1FrNS,P1

∪ X2FrNS,P1
∪ X4FrNS,P1

= X4FrNS,P1
,

X1FrNS,P1
∪ X3FrNS,P1

∪ X4FrNS,P1
= X4FrNS,P1

, X2FrNS,P1
∪ X3FrNS,P1

∪ X4FrNS,P1
= X4FrNS,P1

,
X1FrNS,P1

∪ X2FrNS,P1
∪ X3FrNS,P1

∪ X4FrNS,P1
= X4FrNS,P1

.

7.2. Indiscrete and Discrete Fermatean Neutrosophic Soft Topology
ForFrNSS(D, P1), τfrnsp1

= {∅FrNS,P1
, UFrNS,P1

} is named as indiscreteFrNST and τfrnsp1
=

FrNSS(D, P1) is named as discrete FrNST .

7.3. Coarser and Finer Fermatean Neutrosophic Soft Topology
More than one FrNST s could be defined over D with respect to the set of parameters P1 and let

τ1frnsp1
and τ2frnsp1

be two such FrNST s such that τ1frnsp1
⊂ τ2frnsp1

. Then, τ1frnsp1
is named as coarser
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(smaller or weaker) FrNST than τ2frnsp1
and τ2frnsp1

is named as finer (larger or stronger) FrNST than
τ1frnsp1

.

7.3.1. Example
Consider the FrNST τfrnsp1 given in example 7.1.1. and let τ1frnsp1

= {∅FrNS,P1 ,
UFrNS,P1

,X1FrNS,P1
} be another FrNST over the same domain of discourse D and set of parameters P1.

Clearly, τ1frnsp1
⊂ τfrnsp1

and hence coarser FrNST than τfrnsp1
while τfrnsp1

is finer FrNST than
τ1frnsp1

.

7.4. Remark
Indiscrete FrNST is the coarsest FrNST while discrete FrNST is the finest FrNST .

7.5. τfrnsp1
-Open and τfrnsp1

-Closed Fermatean Neutrosophic Soft Set
A FrNSS XFrNS,P1 is named as τfrnsp1 -open FrNSS if it belongs to τfrnsp1 and it is named as

τfrnsp1 -closed FrNSS if Xc
FrNS,P1

belongs to τfrnsp1 .

7.5.1. Example
Consider the FrNSTS (D, P1, τfrnsp1

) defined in example 7.1.1.. Here, X1FrNS,P1
,

X2FrNS,P1
,X3FrNS,P1

,X4FrNS,P1
are τfrnsp1

-openFrNSSs while X5FrNS,P1
= {(ϵ̂1, ⟨s̃1, (0.1, 0.6, 0.8)⟩, ⟨s̃2, (0.3, 0.3, 0.9)⟩, ⟨s̃3, (0.3, 0.8, 0.1)⟩) ,

(ϵ̂2, ⟨s̃1, (0.4, 0.8, 0.6)⟩, ⟨s̃2, (0.3, 0.3, 0.8)⟩, ⟨s̃3, (0.7, 0.5, 0.1)⟩)},
X6FrNS,P1 = {(ϵ̂1, ⟨s̃1, (0.9, 0.9, 0.6)⟩, ⟨s̃2, (0.8, 0.4, 0.7)⟩, ⟨s̃3, (0.3, 0.8, 0.9)⟩) ,
(ϵ̂2, ⟨s̃1, (0.6, 0.5, 0.8)⟩, ⟨s̃2, (0.6, 0.5, 0.7)⟩, ⟨s̃3, (0.5, 0.4, 0.4)⟩)},
X7FrNS,P1

= {(ϵ̂1, ⟨s̃1, (0.9, 0.9, 0.6)⟩, ⟨s̃2, (0.8, 0.4, 0.7)⟩, ⟨s̃3, (0.3, 0.8, 0.1)⟩) ,
(ϵ̂2, ⟨s̃1, (0.6, 0.8, 0.6)⟩, ⟨s̃2, (0.6, 0.5, 0.7)⟩, ⟨s̃3, (0.7, 0.5, 0.1)⟩)},
X8FrNS,P1

= {(ϵ̂1, ⟨s̃1, (0.1, 0.6, 0.8)⟩, ⟨s̃2, (0.3, 0.3, 0.9)⟩, ⟨s̃3, (0.3, 0.8, 0.9)⟩) ,
(ϵ̂2, ⟨s̃1, (0.4, 0.5, 0.8)⟩, ⟨s̃2, (0.3, 0.3, 0.8)⟩, ⟨s̃3, (0.5, 0.4, 0.4)⟩)} are τfrnsp1 -closed FrNSSs. As the com-
plement of these sets, Xc

5FrNS,P1
= X1FrNS,P1 ,X

c
6FrNS,P1

= X2FrNS,P1 ,X
c
7FrNS,P1

= X3FrNS,P1 ,X
c
8FrNS,P1

=
X4FrNS,P1

are in τfrnsp1
.

7.6. Remark
For all i in an index set I , let τ ifrnsp1

be FrNST s over D with respect to the set of parameters P1.
Then, ∩

i
τ ifrnsp1

is also a FrNST over D with respect to the set of parameters P1.

7.7. Fermatean Neutrosophic Soft Interior and Closure of a Fermatean Neutrosophic Soft Set
Let XFrNS,P1 be a FrNSS in a FrNSTS (D, P1, τfrnsp1). The fermatean neutrosophic soft interior

and closure of XFrNS,P1 are defined as follows,
Xo

FrNS,P1
= ∪{A ∈ (D, P1, τfrnsp1

) : A ∈ τfrnsp1
, A ⊆

FrNS
XFrNS,P1

},

X̄FrNS,P1
= ∩{A ∈ (D, P1, τfrnsp1

) : Ac ∈ τfrnsp1
,XFrNS,P1

⊆
FrNS

A}.

Clearly, Xo
FrNS,P1

is the union of τfrnsp1 -open FrNS subsets of XFrNS,P1 and X̄FrNS,P1 is the
intersection of τfrnsp1

-closed FrNS supersets of XFrNS,P1
.

7.7.1. Example
Consider the FrNSTS (D, P1, τfrnsp1

) defined in example 7.1.1.. The FrNSS, X9FrNS,P1
=

{(ϵ̂1, ⟨s̃1, (0.1, 0.5, 0.9)⟩, ⟨s̃2, (0.2, 0.2, 0.9)⟩, ⟨s̃3, (0.2, 0.6, 0.4)⟩) ,
(ϵ̂2, ⟨s̃1, (0.3, 0.6, 0.8)⟩, ⟨s̃2, (0.2, 0.2, 0.9)⟩, ⟨s̃3, (0.5, 0.4, 0.7)⟩)} is FrNS subset of τfrnsp1 -closed FrNSs
X5FrNS,P1

and X7FrNS,P1
. By definition, X̄9FrNS,P1

= X5FrNS,P1
. Also, the FrNSS, X10FrNS,P1

=
{(ϵ̂1, ⟨s̃1, (0.8, 0.5, 0.1)⟩, ⟨s̃2, (0.9, 0.8, 0.2)⟩,
⟨s̃3, (0.9, 0.4, 0.2)⟩), (ϵ̂2, ⟨s̃1, (0.9, 0.6, 0.2)⟩, ⟨s̃2, (0.9, 0.8, 0.1)⟩, ⟨s̃3, (0.7, 0.7, 0.4)⟩)} is FrNS superset of
τfrnsp1 -open FrNSs X3FrNS,P1 and X4FrNS,P1 . By definition, Xo

10FrNS,P1
= X4FrNS,P1 .
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7.8. Theorem
Let XFrNS,P1 be a FrNSS in a FrNSTS (D, P1, τfrnsp1). Then,

(i) Xo
FrNS,P1

is τfrnsp1 -open FrNSS.
(ii) ∅oFrNS,P1

= ∅FrNS,P1
, Uo

FrNS,P1
= UFrNS,P1

and Xo
FrNS,P1

⊆
FrNS

XFrNS,P1

(iii) (Xo
FrNS,P1

)o = Xo
FrNS,P1

Proof
The proof is directly followed by definition.

7.9. Theorem
Let XFrNS,P1 be a FrNSS in a FrNSTS (D, P1, τfrnsp1). Then,

(i) X̄FrNS,P1 is τfrnsp1 -closed FrNSS.
(ii) ∅̄FrNS,P1

= ∅FrNS,P1
, ŪFrNS,P1

= UFrNS,P1
and X̄FrNS,P1

⊆
FrNS

XFrNS,P1
.

(iii) ¯̄XFrNS,P1
= X̄FrNS,P1

(iv) XFrNS,P1 is τfrnsp1 -closed FrNSS if and only if X̄FrNS,P1 = XFrNS,P1 Proof
The proof is directly followed by definition.

7.10. Lemma
Let XFrNS,P1

be a FrNSS in a FrNSTS (D, P1, τfrnsp1
). Then,

(i) (Xo
FrNS,P1

)c = X̄c
FrNS,P1

,
(ii) (X̄FrNS,P1)

c = (Xc
FrNS,P1

)o,

Proof
Consider a FrNSS, XFrNS,P1

and let {Ai, i ∈ I} be the collection of τfrnsp1
-open FrNS subsets of

XFrNS,P1
defined as,

Ai = {(ϵ̂, ⟨s̃, (θAiP1,ϵ̂(s̃), ϕAiP1,ϵ̂(s̃), ψAiP1,ϵ̂(s̃))⟩ : s̃ ∈ D) : ϵ̂ ∈ P1}. Then, Xo
FrNS,P1

= {(ϵ̂, ⟨s̃,
(
max

i
θAiP1,ϵ̂(s̃),max

i
ϕAiP1,ϵ̂(s̃),min

i
ψAiP1,ϵ̂(s̃)

)
⟩ :

s̃ ∈ D) : ϵ̂ ∈ P1} and (Xo
FrNS,P1

)c = {(ϵ̂, ⟨s̃,
(
min

i
ψAiP1,ϵ̂(s̃), 1−max

i
ϕAiP1,ϵ̂(s̃),max

i
θAiP1,ϵ̂(s̃)

)
⟩ : s̃ ∈

D) : ϵ̂ ∈ P1}.
Clearly {Ac

i , i ∈ I} is the collection of τfrnsp1
-closedFrNS supersets of Xc

FrNS,P1
andAc

i = {(ϵ̂, ⟨s̃, (ψAiP1,ϵ̂(s̃), 1− ϕAiP1,ϵ̂(s̃), θAiP1,ϵ̂(s̃))⟩ :
s̃ ∈ D) : ϵ̂ ∈ P1}. Then, X̄c

FrNS,P1
= {(ϵ̂, ⟨s̃,

(
min

i
ψAiP1,ϵ̂(s̃),min

i
(1− ϕAiP1,ϵ̂)(s̃),max

i
ψAiP1,ϵ̂(s̃)

)
⟩ :

s̃ ∈ D) : ϵ̂ ∈ P1} = {(ϵ̂, ⟨s̃,
(
min

i
ψAiP1,ϵ̂(s̃), 1−max

i
ϕAiP1,ϵ̂(s̃),max

i
ψAiP1,ϵ̂(s̃)

)
⟩ : s̃ ∈ D) : ϵ̂ ∈ P1}

and hence (Xo
FrNS,P1

)c = X̄c
FrNS,P1

.
The proof of (ii) is followed on similar lines.

7.11. Neighborhood of a Fermatean Neutrosophic Soft Set
Let X1FrNS,P1 be a FrNSS in (D, P1, τfrnsp1) then a FrNSS, X2FrNS,P1 is said to be a neighbor-

hood of X1FrNS,P1
if X2FrNS,P1

is a τfrnsp1
-open FrNSS in (D, P1, τfrnsp1

) such that X1FrNS,P1
⊂

FrNS

X2FrNS,P1
.

8. RELATION ON FERMATEAN NEUTROSOPHIC SOFT SET
In this section, relations on FrNSS is established as that is used to develop decision making algo-

rithm. FrNS Relation is a FrNS subset of cartesian product.

8.1. Cartesian Product
Let XFrNS,P1

and XFrNS,P2
be two FrNSSs. The cartesian product XFrNS,P1

× XFrNS,P2
of

FrNSSs XFrNS,P1 and XFrNS,P2 is aFrNSS XFrNS,P1×P2 = {(ξ, ⟨s̃, (θP1×P2,ξ(s̃), ϕP1×P2,ξ(s̃), ψP1×P2,ξ(s̃))⟩ : s̃ ∈ D) :
ξ ∈ P1 × P2} where θP1,ξ, ϕP1,ξ, ψP1,ξ : D → [0, 1] such that for all s̃ ∈ D and ξ ∈ P1 × P2, 0 ≤
θ3P1×P2,ξ

(s̃) + ψ3
P1×P2,ξ

(s̃) ≤ 1 and 0 ≤ θ3P1×P2,ξ
(s̃) + ϕ3P1×P2,ξ

(s̃) + ψ3
P1×P2,ξ

(s̃) ≤ 2, where
θP1×P2

= min{θP1
, θP2

}, ϕP1×P2
= min{ϕP1

, ϕP2
} and ψP1×P2

= max{ψP1
, ψP2

}
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8.2. Example
Let XFrNS,P1 = {(ϵ̂1, ⟨s̃1, (0.8, 0.4, 0.12)⟩, ⟨s̃2, (0.9, 0.7, 0.3)⟩, ⟨s̃3, (0.1, 0.2, 0.35)⟩) ,

(ϵ̂2, ⟨s̃1, (0.6, 0.27, 0.4)⟩, ⟨s̃2, (0.83, 0.7, 0.3)⟩, ⟨s̃3, (0.18, 0.52, 0.7)⟩)} and
XFrNS,P2

= {(ϵ̂2, ⟨s̃1, (0.7, 0.65, 0.3)⟩, ⟨s̃2, (0.57, 0.2, 0.7)⟩, ⟨s̃3, (0.29, 0.6, 0.37)⟩) ,
(ϵ̂3, ⟨s̃1, (0.5, 0.74, 0.5)⟩, ⟨s̃2, (0.46, 0.5, 0.63)⟩, ⟨s̃3, (0.9, 0.3, 0.42)⟩)}, then
XFrNS,P1×P2

= {((ϵ̂1, ϵ̂2), ⟨s̃1, (0.7, 0.4, 0.3)⟩, ⟨s̃2, (0.57, 0.2, 0.7)⟩, ⟨s̃3, (0.1, 0.2, 0.37)⟩) ,
((ϵ̂1, ϵ̂3), ⟨s̃1, (0.5, 0.4, 0.5)⟩, ⟨s̃2, (0.46, 0.5, 0.63)⟩, ⟨s̃3, (0.1, 0.2, 0.42)⟩) ,
((ϵ̂2, ϵ̂2), ⟨s̃1, (0.6, 0.27, 0.4)⟩, ⟨s̃2, (0.57, 0.2, 0.7)⟩, ⟨s̃3, (0.18, 0.52, 0.7)⟩) ,
((ϵ̂2, ϵ̂3), ⟨s̃1, (0.5, 0.27, 0.5)⟩, ⟨s̃2, (0.46, 0.5, 0.63)⟩, ⟨s̃3, (0.18, 0.3, 0.7)⟩)}.

8.3. Fermatean Neutrosophic Soft Relation
Let XFrNS,P1

and XFrNS,P2
be two FrNSSs. A FrNS relation from XFrNS,P1

to XFrNS,P2
is a

FrNS subset RFrNS,K×L of XFrNS,P1×P2
, where K× L ⊆ P1 × P2.

8.4. Example
Consider the FrNS sets and their cartesian product in example 8.2.. Following are two FrNS relations

between XFrNS,P1
and XFrNS,P2

,
RFrNS,P1×P2,1 = XFrNS,K×L =
{((ϵ̂2, ϵ̂2), ⟨s̃1, (0.4, 0.2, 0.5)⟩, ⟨s̃2, (0.3, 0.1, 0.9)⟩, ⟨s̃3, (0, 0.3, 0.7)⟩) ,
((ϵ̂2, ϵ̂3), ⟨s̃1, (0.5, 0.2, 0.6)⟩, ⟨s̃2, (0.46, 0.5, 0.7)⟩, ⟨s̃3, (0.1, 0.3, 0.75)⟩)}, with K = {ϵ̂2} ⊆ P1 and L =
{ϵ̂2, ϵ̂3} ⊆ P2, and
RFrNS,P1×P2,2 = XFrNS,K×L =
((ϵ̂2, ϵ̂2), ⟨s̃1, (0.6, 0.27, 0.4)⟩, ⟨s̃2, (0.57, 0.2, 0.7)⟩, ⟨s̃3, (0.18, 0.52, 0.7)⟩) ,
((ϵ̂2, ϵ̂3), ⟨s̃1, (0.5, 0.27, 0.5)⟩, ⟨s̃2, (0.46, 0.5, 0.63)⟩, ⟨s̃3, (0.18, 0.3, 0.7)⟩)}

8.5. Remark
As a relation from a set A with cardinality m to a set B with cardinality n is defined as a subset of

cartesian productA×B so the number of possible relations from setA to setB is 2mn but in case of Fermatean
Neutrosophic soft set the number of FrNS relations between two sets is more than the number of classical
relations.

8.6. Domain and Range of Fermatean Neutrosophic Soft Relation
Let RFrNS,K×L be FrNS relation from XFrNS,P1

= (f ∗, P1) to XFrNS,P2
= (g∗, P2) then its domain

and range is defined as,
Dom(RFrNS,K×L) = (f ∗|K,K),K ⊆ P1 : for all ϵ̂i ∈ K, there exists ϵ̂j ∈ L such that (ϵ̂i, ϵ̂j) ∈ K× L}
Range(RFrNS,K×L) = (g∗|L,L),L ⊆ P2 : for all ϵ̂j ∈ L, there exists ϵ̂i ∈ K such that (ϵ̂i, ϵ̂j) ∈ K× L}

8.7. Example
In example 8.4., the domain and range of RFrNS,P1×P2,1 and RFrNS−P1,P2,2 are given as follows,

Dom(RFrNS,P1×P2,1) = Dom(RFrNS,P1×P2,2) =
{(ϵ̂2, ⟨s̃1, (0.6, 0.27, 0.4)⟩, ⟨s̃2, (0.83, 0.7, 0.3)⟩, ⟨s̃3, (0.18, 0.52, 0.7)⟩)}
Range(RFrNS,P1×P2,1) = Range(RFrNS,P1×P2,2) =
{(ϵ̂2, ⟨s̃1, (0.7, 0.65, 0.3)⟩, ⟨s̃2, (0.57, 0.2, 0.7)⟩, ⟨s̃3, (0.29, 0.6, 0.37)⟩),
(ϵ̂3, ⟨s̃1, (0.5, 0.74, 0.5)⟩, ⟨s̃2, (0.46, 0.5, 0.63)⟩, ⟨s̃3, (0.9, 0.3, 0.42)⟩)}.

8.8. Inverse of a Fermatean Neutrosophic Soft Relation
Inverse of a FrNS relation RFrNS,K×L is R−1

FrNS,K×L = RFrNS,L×K.

8.9. Example
The inverse of FrNS relation RFrNS,P1×P2,1 in example 8.4. is,

R−1
FrNS,P1×P2,1

={((ϵ̂2, ϵ̂2), ⟨s̃1, (0.4, 0.2, 0.5)⟩, ⟨s̃2, (0.3, 0.1, 0.9)⟩, ⟨s̃3, (0, 0.3, 0.7)⟩) ,
((ϵ̂3, ϵ̂2), ⟨s̃1, (0.5, 0.2, 0.6)⟩, ⟨s̃2, (0.46, 0.5, 0.7)⟩, ⟨s̃3, (0.1, 0.3, 0.75)⟩)}.
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8.10. Composition of Fermatean Neutrosophic Soft Relations
Let RFrNS,P1×P2

= {
(
ξij = (ϵ̂i, ϵ̂j), ⟨s̃,

(
θP1×P2,ξij (s̃), ϕP1×P2,ξij (s̃), ψP1×P2,ξij (s̃)

)
⟩ : s̃ ∈ D

)
:

ξij ∈ P1×P2} be aFrNS relation fromP1 toP2 and RFrNS,P2×P3 = {
(
ξjk = (ϵ̂j , ϵ̂k), ⟨s̃,

(
θP1×P2,ξjk(s̃), ϕP1×P2,ξjk(s̃), ψP1×P2,ξjk(s̃)

)
⟩ : s̃ ∈ D

)
:

ξjk ∈ P2 × P3} be FrNS relation from P2 to P3 then composition of RFrNS−P1,P2 and RFrNS−P2,P3 is de-
fined as,
RFrNS,P1×P2

◦ RFrNS,P2×P3
=

{(ξik = (ϵ̂i, ϵ̂k), ⟨s̃, (θP1×P3,ξik(s̃), ϕP1×P3,ξik(s̃), ψP1×P3,ξik(s̃))⟩ : s̃ ∈ D) : ξik ∈ P1 × P3

for which, there exist(ϵ̂i, ϵ̂j) ∈ P1 × P2and(ϵ̂j , ϵ̂k) ∈ P2 × P3}, where
θP1×P3,ξik = min{θP1×P2,ξij , θP2×P3,ξjk}, ϕP1×P3,ξik = min{ϕP1×P2,ξij , ϕP2×P3,ξjk}, ψP1×P3,ξik = max{ψP1×P2,ξij , ψP2×P3,ξjk}
that is RFrNS,P1×P2 ◦ RFrNS,P2×P3(ϵ̂i, ϵ̂k) = RFrNS,P1×P2(ϵ̂i, ϵ̂j) ∩R RFrNS,P2×P3(ϵ̂j , ϵ̂k)

8.11. Example
Let P1 = {ϵ̂2}, P2 = {ϵ̂2, ϵ̂3}, P3 = {ϵ̂4, ϵ̂5} be the set of parameters and consider the FrNS

relations, RFrNS,P1×P2
= {((ϵ̂2, ϵ̂2), ⟨s̃1, (0.4, 0.2, 0.5)⟩,

⟨s̃2, (0.3, 0.1, 0.9)⟩, ⟨s̃3, (0, 0.3, 0.7)⟩),
((ϵ̂2, ϵ̂3), ⟨s̃1, (0.5, 0.2, 0.6)⟩, ⟨s̃2, (0.46, 0.5, 0.7)⟩, ⟨s̃3, (0.1, 0.3, 0.75)⟩)} and
RFrNS,P2×P3

= {((ϵ̂2, ϵ̂4), ⟨s̃1, (0.6, 0.2, 0.3)⟩, ⟨s̃2, (0.5, 0.1, 0.7)⟩, ⟨s̃3, (0.15, 0.2, 0.7)⟩) ,
((ϵ̂2, ϵ̂5), ⟨s̃1, (0.3, 0.52, 0.6)⟩, ⟨s̃2, (0.46, 0.30.63)⟩, ⟨s̃3, (0.5, 0.2, 0.77)⟩)}, from P1 to P2 and from P2 to P3,
respectively. Their composition is given by,
RFrNS,P1×P2

◦ RFrNS,P2×P3
= RFrNS,P1×P3

=
{((ϵ̂2, ϵ̂4), ⟨s̃1, (0.4, 0.2, 0.5)⟩, ⟨s̃2, (0.3, 0.1, 0.9)⟩, ⟨s̃3, (0, 0.2, 0.7)⟩) ,
((ϵ̂2, ϵ̂5), ⟨s̃1, (0.3, 0.2, 0.6)⟩, ⟨s̃2, (0.46, 0.3, 0.7)⟩, ⟨s̃3, (0.1, 0.2, 0.77)⟩)}.

8.12. Proposition
Let RFrNS,P1×P2

and RFrNS,P2×P3
be two FrNS relations. Then

(i) (R−1
FrNS,P1×P2

)−1 = RFrNS,P1×P2
,

(ii) (RFrNS,P1×P2 ◦ RFrNS,P2×P3)
−1 = R−1

FrNS,P2×P3
◦ R−1

FrNS,P1×P2
,

(iii) RFrNS,P1×P2 ⊆ RFrNS,P2×P3 implies R−1
FrNS,P1×P2

⊆ R−1
FrNS,P2×P3

.
This section presents a decision-making algorithm using fermatean neutrosophic soft relations. A

sample problem is presented as an explanatory example.

9. SAMPLE PROBLEM
In a university, two friends A and B want to choose a common major for the bachelor’s degree from a

list of majors they both are interested in,
D = {Data Analytics, Information Technology,BSCS}, according to their choice of parameters. Person A
wants a major that assure the highly paid job oppertunaties and provide an exposure to real world applica-
tion problems that is P1={future employbility, best paying, exposure to real world applications} and person B
wants a major that completes on time without any economic burden and associates with office-work jobs that is
P2={timely completion, economically efficient, office work job}. In our example problem, we have considered
hypothetical data using Fermatean Neutrosophic set that could be replaced by the results of a survey. In order
to choose a common major, we will take cartesian product of these sets to get all possible pairs of choices of
A and B. By applying decision making approach, we will choose a major that accomodates the choices of both
friends. Following figure shows the frame diagram for the stated problem.

9.1. Algorithm
The decision-making algorithm for our problem is explained in figure 2
Step I: Input the Fermatean Neutrosophic Soft sets.

XFrNS,P1 = {(ϵ̂1, ⟨s̃1, (0.7, 0.4, 0.3)⟩, ⟨s̃2, (0.57, 0.2, 0.7)⟩, ⟨s̃3, (0.1, 0.2, 0.37)⟩) ,
(ϵ̂2, ⟨s̃1, (0.5, 0.4, 0.5)⟩, ⟨s̃2, (0.46, 0.5, 0.63)⟩, ⟨s̃3, (0.1, 0.2, 0.42)⟩) ,
(ϵ̂3, ⟨s̃1, (0.6, 0.27, 0.4)⟩, ⟨s̃2, (0.57, 0.2, 0.7)⟩, ⟨s̃3, (0.18, 0.52, 0.7)⟩)}. XFrNS,P2

= {(ϵ̂4, ⟨s̃1, (0.5, 0.27, 0.5)⟩, ⟨s̃2, (0.46, 0.5, 0.63)⟩, ⟨s̃3, (0.18, 0.3, 0.7)⟩) ,
(ϵ̂5, ⟨s̃1, (0.8, 0.4, 0.12)⟩, ⟨s̃2, (0.9, 0.7, 0.3)⟩, ⟨s̃3, (0.1, 0.2, 0.35)⟩) ,
(ϵ̂6, ⟨s̃1, (0.6, 0.27, 0.4)⟩, ⟨s̃2, (0.83, 0.7, 0.3)⟩, ⟨s̃3, (0.18, 0.52, 0.7)⟩)}.
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Figure 1. schematic representation of the problem

Figure 2. The decision making algorithm
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Table 8. Information System
Parameter s̃1=Data Analytics s̃2=Information Technology s̃3=BSCS

ϵ̂1= future employbility (0.7, 0.4, 0.3) (0.57, 0.2, 0.7) (0.1, 0.2, 0.37)

ϵ̂2= best paying (0.5, 0.4, 0.5) (0.46, 0.5, 0.63) (0.1, 0.2, 0.42)

ϵ̂3= exposure to (0.6, 0.27, 0.4) (0.57, 0.2, 0.7) (0.18, 0.52, 0.7)
real world applications (0.6, 0.27, 0.4) (0.57, 0.2, 0.7) (0.18, 0.52, 0.7)

ϵ̂4= timely completion (0.5, 0.27, 0.5) (0.46, 0.5, 0.63) (0.18, 0.3, 0.7)

ϵ̂5= economically efficient (0.8, 0.4, 0.12) (0.9, 0.7, 0.3) (0.1, 0.2, 0.35)

ϵ̂6= office work job (0.6, 0.27, 0.4) (0.83, 0.7, 0.3) (0.18, 0.52, 0.7)

Table 9. Relational table between XFrNS,P1 and XFrNS,P2

(ϵ̂i, ϵ̂j) s̃1 s̃2 s̃3
(ϵ̂1, ϵ̂4) (0.5, 0.27, 0.5) (0.46, 0.2, 0.7) (0.1, 0.2, 0.7)

(ϵ̂1, ϵ̂5) (0.7, 0.4, 0.3) (0.57, 0.2, 0.7) (0.1, 0.2, 0.37)

(ϵ̂1, ϵ̂6) (0.6, 0.27, 0.4) (0.57, 0.2, 0.7) (0.1, 0.2, 0.7)

(ϵ̂2, ϵ̂4) (0.5, 0.27, 0.5) (0.46, 0.5, 0.63) (0.1, 0.2, 0.7)

(ϵ̂2, ϵ̂5) (0.5, 0.4, 0.5) (0.46, 0.5, 0.63) (0.1, 0.2, 0.42)

(ϵ̂2, ϵ̂6) (0.5, 0.27, 0.5) (0.46, 0.5, 0.63) (0.1, 0.2, 0.7)

(ϵ̂3, ϵ̂4) (0.5, 0.27, 0.5) (0.46, 0.2, 0.7) (0.18, 0.2, 0.7)

(ϵ̂3, ϵ̂5) (0.6, 0.27, 0.4) (0.57, 0.2, 0.7) (0.1, 0.2, 0.7)

(ϵ̂3, ϵ̂6) (0.6, 0.27, 0.4) (0.57, 0.2, 0.7) (0.18, 0.52, 0.7)

The corresponding information system is represented in the table 8. In the table, the first entry (0.7, 0.4, 0.3)
shows that the association of the parameter ”future employment” with the major ”Data Analytics” has associ-
ateship ”0.7”, indeterminacy ”0.4” and non-associateship ”0.3”.
Step II: Construct the Fermatean Neutrosophic Soft relational table as a result of their cartesian product as
shown in table 9.
Step III: Contruct the coomparison table with the reference of teble 9 evaluating the value θ + ϕ− ψ for each
(ϵ̂i, ϵ̂j) as shown in table 10.
Step IV: Calculate the score value by adding the highest value in each row against s̃i, as shown in table 11.
Step V: Select the object with highest score value.
Both friends will choose ”Data Analytics” as major.

9.2. Remark

Above mentioned technique provides an algorithm for decision-making application. The formulas
used for constructing comparison table and score function could be replaced by some other version of these
e.g. mentioned in [59, 60]. Also if two or more objects get same score value one may apply accuracy function
to get a precise decision [60].

Table 10. Comparison table between XFrNS,P1
and XFrNS,P2

(ϵ̂i, ϵ̂j) s̃1 s̃2 s̃3
(ϵ̂1, ϵ̂4) 0.27 −.04 0.4

(ϵ̂1, ϵ̂5) 0.8 0.07 −0.07

(ϵ̂1, ϵ̂6) 0.47 0.07 −0.4

(ϵ̂2, ϵ̂4) 0.27 0.33 −0.4

(ϵ̂2, ϵ̂5) 0.4 0.33 −0.12

(ϵ̂2, ϵ̂6) 0.27 0.33 −0.4

(ϵ̂3, ϵ̂4) 0.27 −.04 −0.32

(ϵ̂3, ϵ̂5) 0.47 0.07 −0.4

(ϵ̂3, ϵ̂6) 0.47 0.07 −0.32
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Table 11. Score Value of Each Object
s̃i highest value from comaparison table Score Value
s̃1 0.27 + 0.8 + 0.47 + 0.4 + 0.27 + 0.47 + 0.47 3.15

s̃2 0.33 + 0.33 0.66

s̃3 0 0

10. CONCLUSION
The main motivation of this paper is to define a hybrid neutrosophic structure to get a wider possible

range of neutrosophic numbers dealing with real-world problems. In this paper, a hybrid structure, fermatean
Neutrosophic Soft set is defined along with the basic entities of soft set theory as FrNS subset, absolute null
FrNSS, relative null FrNSS, absolute whole FrNSS, relative whole FrNSS as well as FrNS twisted
subset. A few operations as complement, extended and restricted intersection and union are defined. In section
6, algebraic structures as semigroups, subsemigroups, monoids and semirings are defined with respect to the
operations defined on FrNSSs. Section 7 explores the definition and properties of fermatean neutrosophic
soft topological spaces. Section 8 explores the relation defined on FrNSSs named as FrNS relation being
a FrNS subset of cartesian product of FrNSSs. Section 9 deals with its application to decision-making
problems using a decision making algorithm. This paper provides fundamentals of FrNSS that act as a base
to deal with different application problems and to define binary operations and algebraic srtucture with respect
to the binary operations. Another possible extension could be FrNS hypersoft set.
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[41] V. Pătraşcu, The neutrosophic entropy and its five components. Infinite Study, 2015.

[42] A. AD and Y. Oyebo, “Neutrosophic groups and subgroups,” Mathematical Combinatorics, vol. 3, pp. 1–9, 2012.

[43] M. Ali, F. Smarandache, M. Shabir, and M. Naz, “Soft neutrosophic ring and soft neutrosophic field,” Neutrosophic Sets and Systems,
2014.

[44] A. Salama, F. Smarandache, and M. Eisa, “Introduction to image processing via neutrosophic techniques,” Infinite study, 2014.



312 ❒ ISSN: 2704-1077 eISSN 2704-1069

[45] S. Ye, J. Fu, and J. Ye, “Medical diagnosis using distance-based similarity measures of single valued neutrosophic multisets,” Neu-
trosophic Sets and Systems, vol. 7, no. 1, pp. 47–52, 2015.

[46] A. U. Rahman, M. Saeed, M. A. Mohammed, S. Krishnamoorthy, S. Kadry, and F. Eid, “An integrated algorithmic madm approach
for heart diseases’ diagnosis based on neutrosophic hypersoft set with possibility degree-based setting,” Life, vol. 12, no. 5, p. 729,
2022.

[47] A. N. H. Zaied, “Applications of fuzzy and neutrosophic logic in solving multi-criteria decision making problems,” Neutrosophic
Sets and Systems, vol. 13, pp. 38–46, 2016.

[48] M. N. Jafar, M. Saeed, K. M. Khan, F. S. Alamri, and H. A. E.-W. Khalifa, “Distance and similarity measures using max-min
operators of neutrosophic hypersoft sets with application in site selection for solid waste management systems,” Ieee Access, vol. 10,
pp. 11 220–11 235, 2022.

[49] M. R. Ahmad, M. Saeed, U. Afzal, and M.-S. Yang, “A novel mcdm method based on plithogenic hypersoft sets under fuzzy
neutrosophic environment,” Symmetry, vol. 12, no. 11, p. 1855, 2020.

[50] M. Saeed, A. U. Rahman, and M. Arshad, “A study on some operations and products of neutrosophic hypersoft graphs,” Journal of
Applied Mathematics and Computing, vol. 68, no. 4, pp. 2187–2214, 2022.

[51] T. Senapati and R. R. Yager, “Fermatean fuzzy sets,” Journal of ambient intelligence and humanized computing, vol. 11, pp. 663–674,
2020.

[52] S. Broumi, S. Mohanaselvi, T. Witczak, M. Talea, A. Bakali, and F. Smarandache, “Complex fermatean neutrosophic graph and
application to decision making,” Decision Making: Applications in Management and Engineering, vol. 6, no. 1, pp. 474–501, 2023.
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