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ABSTRACT: The classical set theory based on crisp sets is not able to deal with uncertainties which
is a common feature of various real-world problems. This problem is solved using modified forms of sets such
as fuzzy sets, Intuitionistic fuzzy sets, neutrosophic sets, soft sets and hypersoft sets and others along with
their hybrids. In this paper, a modified hybrid of soft set named Fermatean Neutrosophic Soft set (F'r N SS) is
established. Basic entities of set theory including subsets, null set, universal set along with different operators
are defined. With respect to these operators, the algebraic structures as monoid, semigroup and semiring are
defined. Also, fermatean neutrosophic soft topological space and the cartesian product of fermatean neutro-
sophic soft sets and fermatean neutrosophic soft relation are defined to establish an application of this hybrid
structure to decision-making problems.

1. INTRODUCTION

Around the 1870’s, set theory was introduced as a result of Cantor and Dedekind’s efforts, [1] which
proved its worth having various real-world applications. The classical set theory based on crisp sets only
deals with absolute associateship that is, whether a member is contained in a set or not. This limitation of
associateship motivated Zadeh to introduce fuzzy sets that deal with partial associateship [2]. Fuzzy sets were
introduced in 1965, generalized by Pawlak as rough sets in 1982 [3]] and by Molodstov as soft sets in 1999
[4]. These generalizations proved their worth in dealing with the uncertainties in various real-world problems
in almost every field such as engineering, economics, social sciences, environmental sciences and medical
sciences [5-8]].

Fuzzy soft set [7], intuitionistic fuzzy set [9]], intuitionistic fuzzy soft set [L0], hesitant fuzzy set [11]],
hesitant fuzzy soft set [[12], picture fuzzy set [[13]], picture fuzzy soft set [14], hypersoft set [[15]], neutrosophic
soft set [16] and neutrosophic hypersoft set [17] are few variants based on generalization of truthiness (as-
sociateship), falsity (non-associateship) and hesitancy (indeterminacy). We have enlightened some scholarly
activities related to soft sets, neutrosophic sets and fermatean sets. In 2003, Maji proposed the fundamentals
of soft sets including basic entities and operators [[18]] and in 2009 Ali et al. established the modified operators
[19]. Later, the soft set theory evolved as Cagman and Enginoglu proposed the soft matrix [20], Babitha and
Sunil defined relations and functions on soft sets along with their properties [21},22]] and Yang and Guo defined
closure and kernel of soft relations and soft mappings [23]]. More contributions towards soft set theory were
made by different mathematicians [24H27]]. While soft set theory was developing by above mentioned findings,
mathematicians tried to connect it with algebraic structures as Aktag and Cagman established soft groups [28]],
Acer defined soft rings [5] and Aslam and Qurashi connected sub algebraic structures related to soft groups
[29].

Inspired by philosophical logics (relative and absolute truthiness and falsity) and various real-world
scenarios such as game results (win, loss, tie), voting outcomes (in favour of, opposite, blank vote), num-
bers (positive, negative, neutral), answers to a straight question (yes, not applicable, no), control theory and
decision-making (making a decision, hesitating, accepting, rejecting, pending). Smarandache introduced a
tri-component set named as neutrosophic sets (knowledge of neutral wisdom) dealing with three components:
associateship, non-associateship and indeterminacy [30} 31]. Neutrosophic set theory evolved as Wang et al.
proposed single and interval valued neutrosophic sets [32}133]] and Salama and Alblowi presented Neutrosophic
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Table 1. Alreday existing structures

Set associateship Indeterminacy Non-associateship condition
value 0 value ¢ value )
m i n
Crisp Set Oorl 0 0
Fuzzy Set in [0, 1] 0 0
Intuitionistic in [0, 1] 0 in [0, 1] 0<0+9y <1
Fuzzy Set
Pythagorean in [0, 1] 0 in [0, 1] 0< 07 +¢? <1
Fuzzy Set
Fermatean in [0, 1] 0 in [0, 1] 0< 0P +y><1
Fuzzy Set
Neutrosophic Set in [0, 1] in [0, 1] in [0, 1] 0<0+o¢p+¢ <3
Intuitionistic in [0, 1] in [0, 1] in [0, 1] 0<0+9y <1
Neutrosophic Set 0<O0+o¢p+9 <2
Pythagorean in [0, 1] in [0, 1] in [0, 1] 0<+¢° <1
Neutrosophic Set 0<?+p2+4%<2
Fermatean in [0, 1] in [0, 1] in [0, 1] 0<P+y3<1
Neutrosophic Set 0< 03 +¢>+9°<2

topological spaces [34]. Georgiou introduced soft topological spaces [35] and Bera and Mahapatra introduced
neutrosophic soft topological spaces [36]. Various mathematical entities were established relative to neutro-
sophic set as measure and integral [37], lattices [38], vector spaces [39]], continuous function [40], entropy
[41], group and subgroup [42], soft ring and soft field [43]]. Mathematicians also discussed various applica-
tions of neutrosophic techniques including image processing [44]], medical diagnosis [45} 46]] and multi-criteria
decision-making [47H49] using similarity measures, neutrosophic logic and hypersoft graphs [50]. Senapati and
Yager introduced fermatean fuzzy set [51] to deal with the limitations of associateship and non-associateship in
intuitionistic fuzzy and pythagorean fuzzy sets. It opened a new horizon for researchers as Broumi et al. applied
complex fermatean neutrosophic graphs to decision-making [52], Bilgin et al. introduced fermatean neutro-
sophic topological spaces [33] and Salsabeela and John discussed TOPSIS techniques on fermatean fuzzy soft
sets [54]).

This paper presents the fundamentals of a hybrid structure fermatean Neutrosophic Soft set (F'rN.S\S) that
allows more flexible choices for associateship, non-associateship and indeterminacy. We have established its
definition, basic set theoretic entities as subset, null set, universal set, different operators and basic algebraic
structures relative to these operators. We have also defined fermatean neutrosophic soft topological space,
cartesian product, relations on F'r N.S.S and discussed its approach to decision-making problem.

2.  STRUCTURAL COMPARISON

In this section, we have presented fermatean neutrosophic set as a generalization of some basic hy-
brids. Table[I]shows how different values of associateship, indeterminacy and non-associateship correspond to
other already existing hybrid structures and some basic sets. It is to be noted that fermatean neutrosophic set
is not a special case of g-rung orthopair fuzzy set with q=3, as in g-rung orthopair fuzzy set only associateship
and non-associateship (dependent) are discussed while in case of fermatean neutrosophic set, associateship,
non-associateship (dependent) and indeterminacy (independent) are discussed. Pythagorean neutrosophic set
is generalization of intuitionistic neutrosophic set and fermatean neutrosophic set is a generalization of both
pythagorean neutrosophic and Intuitionistic neutrosophic sets.

3.  MOTIVATION

In this section a few real-world scenerios that neutrosophic set deals with, are presented. The hybrid
structure F'rNSS proves its worth being able to deal with more options for associateship, non-associateship
and indeterminacy as compared to itutionistic and pythagorean neutrosophic sets.
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3.1. General Example

Problem: During the journey from place A to place B, a truck is loaded with various items, including
tables of three different sizes (large (table 1), medium (table 2) and small (table 3)), a sofa set with three
different sizes (three-seater (sofa 1), two-seater (sofa 2) and one-seater (sofa 3)), a cupboard and two boxes.
Table 2 is positioned on top of table 1 and table 3 is placed underneath table 1. Sofa 3 is placed on top of sofa 1
while sofa 2 is inclined against sofa 1 forming a slopy surface. Now let’s express the volume covered by each
item on the truck throughout the entire journey.
Solution: In this particular problem, the coverage of volume by each item is not absolute. For example table 2
does not cover the volume of the truck even though it is present in the truck. Sofa 2 formimg an inclined plane
with sofa 1 covers approximately 50% to 60% of the area (associateship) while the remaining 50% to 40%
does not cover the volume of the truck (non-associateship). Moreover, the movement of the truck introduces
frequent changes in these values of associateship and non-associateship. This problem cannot be effectively
addressed using crisp sets. To analyse and discuss this problem, we require a neutrosophic soft structure that
accounts for the dependencies between associateship and non-associateship. The most suitable hybrid structure
for this problem is the F'r N'S'S which allows a wide range of possible values for associateship, indeterminacy,
and non-membership. e.g if associateship is 0.9 (90%) and non-associateship is 0.5 (50%) then 0.9 + 0.5 > 1,
so intuitionistic neutrosophic soft set does not support it. Also 0.9 4+ 0.52 > 1 so pythagorean neutrosophic
soft set does not support it but 0.9% + 0.5% < 1 so fermatean neutrosophic soft set will support it.

3.2. Neutrosophy in Quantum Mechanics

Both wave and particle are characteristics of photons [S5]. Independently, neither the photon’s particle
character nor its wave nature can account for the phenomenon of light. The particle nature of photons elucidates
their straight-line motion, while their wave nature accounts for phenomenon like reflection.
The neutrosophic nature of sets finds its most valuable application in describing the quantum state of photons,
which exists in a superposition, manifesting as two distinct states. This complex situation can be effectively
represented using the fermatean neutrosophic set which encompasses a wide range of potential values for
associateship, non-associateship, and indeterminacy.

3.3. Neutrosophy in particle physics

Supersymmetry (SUSY) is a theory that proposes the existence of a connection between bosons (par-
ticles with zero or integral spin) and fermions (particles with half-integer spin). It postulates that these particles
can be organised into the same doublet and introduces a supercharge operator, denoted as (), which can trans-
form fermions into bosons and vice versa.
In order to show an unbroken symmetry, fermions and bosons can be conceptualised as Neutrosophic states
possessing opposing properties such as spin and statistics. The SUSY doublet serves as a neutral term that
accommodates both types of particles within the framework of supersymmetry. [56]

3.4. Neutrosophy and accelerated expansion of universe

The Nobel Prize in Physics was awarded in 2011 for the groundbreaking discovery of the universe’s
accelerated expansion. This phenomenon can be effectively expressed using neutrosophy which encompasses
three states, expansion, contraction, and a stable state characterised by neither expansion nor contraction. Neu-
trosophy provides a suitable framework to capture the complex dynamics of the universe’s evolution [S7].
Researchers have discussed many real-world applications of neutrosphy, a few of which are mentioned above.
An important point to notice is that the dual nature of photons is interdependent, so neutrosophic structure
cannot deal with it and we need to develop a hybrid neutrosophic structure to discuss such scientific scenar-
ios. To have an extended domain, we have developed fermatean neutrosophic soft set which is an extension of
intuitionistic and pythagorean neutrosophic structures.

4. PRELIMINARIES

In order to comprehend the paper’s main findings, some basic definitions, mainly following 53], [58]]
and [36]] are presented in this section. Let’s define few notations that we have used for this paper. D, P(D),
P(D)prn and P(D) are used to represent the domain of discourse, collection of all the classical subsets of
D, fermatean neutrosophic subsets of D and neutrosophic subsets of D, respectively. P; and P» are used to
represent the subsets of set of parameters P. 0x,¢x,¥x : D — [0, 1] where 0x(3), ¢x(5) and ¢x(5) are
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representing associateship, indeterminacy and non-associateship levels of § € ID relative to the set X.
The collection of possible values for fermatean neutrosophy associateship and non-associateship levels is a
super set of the collections of pythagorean as well as intuitionistic associateship and non-associateship levels.

4.1. Fermatean Fuzzy Set
Err = {(5,(0c(5),9¢(3))) : 5 € D,0 < 62(5) + 9(5) < 1} is representing a fermatean fuzzy set
over the domain of discourse D.

4.2. Neutrosophic Set

Ev = {(5,(0c(5), 0¢(5),4¢(5))) + 8 € D,0 < 0c(8) + ¢e(8) + e(5) < 3} is representing a
neutrosophic set over the domain of discourse 1.

4.3. Soft Set
The pair (f*, P1) = {(&,f*(€)) : € € Py, f* : P, — P(D)} is representing a soft set.

4.4. Fermatean Neutrosophic Set

Errn = {(5, (0(5), 9¢(5), ve(5))), 0 < O2(5) +12(5) < 1,0 < 0(5) + ¢ (5) +¥¢(5) < 2: 5 € D}
is representing a fermatean neutrosophic set over the domain of discourse .

4.5. Neutrosophic Soft Set
The pair (f*, P1) = {(&f*(€)) : € € Py, f* : P, — P(D)n} is representing a neutrosophic soft set.
More precisely,

ENs,p, =
{(6,{(5, (0P, ,e(3), dp,,e(5), P e(5))) . 0 < Op, (5) + PP, e(5) + P e(5) <3:5€D}): €€ P}

4.6. Neutrosophic Soft Subset

A neutrosophic soft set {ns p, =
{(&,{(3,(0p, c(3), 6P, ¢(3),¥p, c(8))),0 < Op, o(3) + dp, e(3) +¥p, e(3) <3:5€D}): €€ P }isconsid-
ered to be a neutrosophic soft subset of {ns, p, =
{(&,{(5,(0p,,e(5), 0P,,e(5) ¥P,,e(5))) , 0 < Op, e(5) + Op, e(5) + hp, e(5) <3:5€D}) 1 € € P}if () P C
Py, (i) Op; e(5) < 0p,e(5), dp,e(5) < Op,e(5) and Yp, o(5) > Yp, e(3), forall s € D, € € Pr.

4.7. Neutrosophic Soft Twisted Subset

A neutrosophic soft set {ns. p, =
{(é, {<§, (91317@(5), ¢P17g(§), @Dphg(g)» ,0< Gphg(g) + ¢P17g(§) + l/)pl,g(g) <3:5¢ ]D)}) 1€ € Pl} is consid-
ered to be a neutrosophic soft twisted subset of {ns.p, =
{(&,{(3,(0p,,e(3),0p,,e(3), VP, e(5))) s 0 < Op, 6(3) + @p, e(3) + ¥p, e(5) < 3:3€D}): €€ Po}if (i) 1 C
Py, (i) 9p1,g(§) > 91:’2@(5), ¢P1,€(§) > ¢P2,€(§) and wpl,g(g) < wpl’g(g), forall s € D, € € P;.

4.8. Relative Null and Relative Whole Neutrosophic Soft Set

A neutrosophic soft set, Ens.p, = {(€,{(5,(0,0,1)) : § € D}) : € € Py} is named as relative
null neutrosophic soft set and {ns p, = {(€,{(5,(1,1,0)) : § € D}) : € € P;} is named as relative whole
neutrosophic soft set.

4.9. Operations on Neutrosophic Soft Sets
Following are few operations defined on neutrosophic soft sets,
(i) Complement: &§s p, = {(€, {(3, (¥p,,e(5), PP, e(5),0p,e(3))) : 5 €D}) 1 € € P}
(ii) Restricted unoin:
éns, P, Ur Ens, P, = &Ns Py =
{(&,{(5, (max{0p, e(5),0p, (5)}, max{dp, (5), op, e(5)}, min{epp, (5),¥p, e(5)})) : S €D}) 1 € € Pa}, Py =
PiNPs.
(iii) Restricted intersection:
éns, P, MR Ens, P, = ENs Py =
{(67 {<§a (min{Qpl,g(é), 91327@(5)}, min{¢Pl,é(§), ¢P2,€(§)}a max{wP17€(§)7 sz,é(g)}» HCRS D}) 1EE€ P3}7 P =
PNP,.
(iv) Extended unoin and intersection: {ns p, =
{(&,{(5,(0p,,e(5), 0P, ,c(8),¢¥p,,e(5))) : § € D}) : € € Ps}, Ps = PyUP,, where associateship, indeterminacy
and nonassociateship values are mentioned in table
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Table 2. associateship, indeterminacy and nonassociateship function values for extended union and

intersection
partition of associateship Indeterminacy Non-associateship
Ps=PUP, value value value
P Ug P,
E€cP\ P, Op, e op, e Ypy e
eE€E P\ P 0p,,e Ppye VYpy e
eePnNP  max{0p ¢ 0pe} max{dp ¢, dp et min{Yp e p, e}
P Ng P>
EEP\ P, Op, e opy e Vp, e
E€P\ P Op,.e ép, . Vp,,e

eePnNP  min{0p e 0p,e}  min{gp e dp e} max{vp e, ¥py.e}

Table 3. Tabular form of FINSS Xr,ns p,

XFrrNs, Py 51 S2 S3
€1 0.8,04,0.1) (09,0.7,0.3) (0.1,0.2,0.3)
€2 0.6,0.2,0.4) (0.8,0.7,0.3) (0.1,0.5,0.7)

4.10. Neutrosophic Soft Topological space

Let NSS(D, P) be a collection of all neutrosophic soft sets over I with respect to the set of param-
eters P, and 7,5, be a subset of NSS(ID, Py). Tpsp, is named as neutrosophic soft topology on (D, P; ) if (i)
relative null and relative whole neutrosophic soft sets belong to 7,4, , (i) the intersection of finite number of
neutrosophic soft sets in 7,,5;,, also belongs to 7,4, , (iii) the union of any number of neutrosophic soft sets in
Tnsp, also belongs to 7y, .
The triplet (D, P, T,,sp, ) is named as neutrosophic soft topological space.

4.11. Neutrosophic Soft Cartesian Product
The cartesian product {ns, p, X Ens,p, is a neutrosophic soft set defined by,
Ens.py X ENs.p, = ENS,Py R
= {(&,€¢), (5, (min{0p, (5), 0p, +(5)}, min{op, e(3), dp, o (5)}, max{hp, &(5), ¥p, 4(5)}) : € D) : (€,€) €
P1 X PQ}

5.  FERMATEAN NEUTROSOPHIC SOFT SET
In this section, a noval hybrid is established, possessing the properties of fermatean, neutrosophic and
soft sets.

5.1. Definition

For the domain of discourse D and the collection of parameters P, define a mapping f* : P, —
P(D) g, N, where P; is a non empty subset of P and P(D) g,y is collection of all fermatean neutrosophic
subsets of D. The fermatean neutrosophic soft set (F'rN.S\S) is defined as,
Xprns,p, = (", P1) = {(€ (5, (0p,,e(5), 9P, e(5), VP, e(5))) : S € D) : € € P} where Op, ¢, dp, ¢, ¢p, ¢
D — [0,1] such that forall ¢ € Dand é € P1,0 < 6% .(5) + ¢, (5) < Tand 0 < 63 (3) + ¢, o(5) +
Py, (8) < 2.

5.1.1. Example

Let D = {51, 3892,33}, P = {€1,¢éa,...,é5} and P; = {€1,é2}. Following is an example of FrNSS,
Xrens.p, = (61, (51, (0.8,0.4,0.1)), (2, (0.9,0.7,0.3)), (35, (0.1,0.2,0.3))) ,
(€2, (51,(0.6,0.2,0.4)), (32, (0.8,0.7,0.3)), (33, (0.1,0.5,0.7))) }. Table 3|is representing the tabular form of
FrNSS.

5.2. Fermatean Neutrosophic Soft Subset

Over the same domain of discourse, A FrNSS, Xp,ns p, is considered as a FrN.S subset of
Xprns,p, if () Pr C Py, (i) forall € € Py and 5 € D,0p, ¢(5) < 0p,e(5),dp, e(5) < ép,e(5) and
Vpye(5) > 1p, e(3).
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Remark: Its a clear observation that the definition of classical subset does not hold here as Xp,ns,p, C
FrNS

XFrNs,p, does not imply that all the points of X, v s, p, are presentin X, ng,p,-

5.2.1. Example
Consider the F'rNSS Xp,ng,p, considered in example and let X, N5, p, be another FrNSS
over the same domain of discourse givenas Xp,ns,p, = {(é1, (51, (0.9,0.5,0.1)), (52, (0.9,0.8,0.1)), (53, (0.4,0.5,0.2))) ,
(é2,(51,(0.7,0.3,0.2)), (32, (0.8,0.7,0.2)), (33, (0.1,0.7,0.4))),
(64, <§17 (05, 0.2, 06)>, <§2, (07, 037 05) >>, <§37 (04, 0.2, 06)>)}, where P2 = {€17 gg, €4} Clearly, }:F’I”NS,Pl
is FrN.S subset of Xpyrng,p,-

5.3. Fermatean Neutrosophic Soft Twisted Subset
Over the same domain of discourse, Xy 5, p, is considered to be a F'r N S twisted subset of X prn 5, P,
lf(l) P1 - Pg, (1]) forall € € P1 and S € ]D), 9p17g(§) > 9p27g(§), qbphg(g) > ¢p27g<§) and ’d)phg(g) < 1/JP27g(§).

5.3.1. Example
Consider the F'rNSS, Xpynsg,p, in example and let Xp,Ns,p, =
{(&1, (51, (0.5,0.2,0.1)), (82, (0.7,0.5,0.6)), (53, (0.1,0.1,0.5))) ,
(éa, (31, (0.4,0.1,0.7)), (32, (0.5,0.5,0.5)), (33, (0.1,0.2,0.9))),
(€és,(51,(0.4,0.2,0.3)), (32, (0.6,0.2,0.1)), (33, (0.5,0.2,0.5))) }, where P3 = {¢é1, €2, €3 }. Clearly, XrrNs,p
is FrN S twisted subset of Xprn g, p;.

5.4. Fermatean Neutrosophic Soft Equal Set
Over the same domain of discourse, two FrNSSs Xp,ns,p, and Xp,ns, p, are considered to be

FrNSequal,ifeither Xprns,p, € Xprnvs,p,and Xpens,p, € Xpens,p, O Xpens,py, © Xprns,ps
FrNS FrNS FrNS

and Xr,ns,P, XFrNs,Pr-

C
FrNS
5.5. Relative Null Fermatean Neutrosophic Soft set

A FrNSS Xpyns,p, is considered as relative null FrNSS (Op,ns,p,) if for all € € P;,§ €
D, 913] ,g(g) =0= ¢p] ,g(g) and ¢p17g(§) = 1 that is,
(DFTNS,Pl = {(é, <§, (0,0, 1)> 15 € D) = Pl}.

5.6. Relative whole Fermatean Neutrosophic Soft set
UFrNS,Pl = {(g, <§, (1, 1,0)> 15 ¢ ]D)) TEE€ Pl}.

5.7. Absolute Null Fermatean Neutrosophic Soft set

A FrNSS Xpyns,p is considered as absolute null F'rNSS (0p,ng,p) if forall é € P,0pe($) =
0= ¢P7g(§) and ¢p7g(§) = 1 that is,
Drrnspe = {(¢(5,(0,0,1)) : 5€D): ¢ € P}.

5.8. Absolute whole Fermatean Neutrosophic Soft set

AFrNSS Xp,nsg pisconsidered absolute whole F'rNSS (Up,ng,e)ifforallé € P,5s € D,0p(5) =
1= gf)p’g(g) and 'I/Jpﬁg(g) = 0 that is,
UFrNS,P = {(é, <§, (1,170)> 1S € D) 1E€ P}

5.9. Proposition
Let Xprns, Py s XFrNS Py XFrNs, Py be FTINSSs, then
@) Oprnsp, S Xprns.pys
FrNS

(i) Xprns,pr € Uprns,p, and Xpens,p, C Uprns,p,
FrNS rN

=

s
(i) Xprnvs,p, © Oprns,p, and Xppns, p, SQ)FTNS,Ps

FrNS F
(V) Uprns,pr S ZEFrNS,Pis
FrNS

W) Xprns,py, S Xpens,p, and Xppns,p, ©  Xprns,p, implies Xpens,py © Xprns,pss
FrNS FrNS FrNS

Bilat
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C Xprns,p, and Xppns,p, © Xprns,p, implies Xpevs,pr © Xprns,pss
FrNS FrNS FrNS

X and X = X . implies X = X -
FrNS,Ps, FrNS,Py = o AFrNS,Ps p FrNS,P o = AFrNS Py

(Vi) Xprns, Py
(vi)XprNs, P, v
5.9.1. Remark

Observe that 0p,nsp € Xprns,p, as P ¢ Pp and hence first condition of being Fr NS subset
FrNS
does not hold.

5.10. Not set of set of parameters
—P = {—¢é: é € P,—~é=not ¢} is representing the not set of set of parameters P.

5.11. Complement of Fermatean Neutrosophic Soft Set

The complement of a F'rNSS Xp,ns,p,, denoted by X%, ng p, is @ F'rNSS given as (f*¢, —~Py)
where f*: =Py — P(D) gy such that 0-p, ~e = ¥p ¢, 0-p,~e =1 — ¢p e and Yp e = Op, c.

5.11.1. Example

The complement of F'rNSS Xp,ns,p, in example is,
Xprns,p, = {(é1,(51,(0.1,0.6,0.8)), (32, (0.3,0.3,0.9)), (53, (0.3,0.8,0.1))) ,
(2, (31, (0.4,0.8,0.6)), (32, (0.3,0.3,0.8)), (33, (0.7,0.5,0.1)))}.

5.12. Proposition
Let Xp,ns,p, bea FrNSS, then
W) (X%, ns,p,)" = XFrns,prs
(ii) Q%T‘NS,Pl = UFrNS,Pl,
(111) (Z)CFTNSJD = UF’I‘NS,Ps
(iv) U}?TNs,pl = (Z)FTNS,Pl,
WM Uf.ns.p = DrrNs,p-

5.13. Extended Union of Fermatean Neutrosophic Soft Sets

The extended union (Ug) of two FrNSSsisa FrNSS Xp,ng p, where P3 = P; U P, with asso-
ciateship, indeterminacy, non-associateship for € € P; U P; is defined as follows,

Op,e, PP e, VP e iféee P\ P
Op,.e, PPs.esVPse = § Oy, 0Py es VP, e iféee P\ P
max{0p, ¢,0p, ¢}, max{dp, ¢, op, e}, Min{Yp, ¢, Vp, e} ifé€ PLNPy

5.14. Restricted Union of Fermatean Neutrosophic Soft Sets

The restricted union (Ug) of two FrNSSs is a FrNSS Xp,ng p, where P = P, N P, with
associateship, indeterminacy, non-associateship for € € P; N P is defined as follows,
0P3,5 = max{aplyé’ 9P2,é}v ¢P3,€ = max{(rbpl,év ¢P2,5}7 1/)P3,€ = min{wphéa wpmé}'

5.14.1. Example

Consider the FrNSSs Xp,ns,p, and Xp,ns,p, in example [5.1.1] and respectively. Then
their union will be,
Xprns,p,UsXrrns p={(é1, (51,(0.9,0.5,0.1)), (32, (0.9,0.8,0.1)), (33, (0.4,0.5,0.2))), (é2, (51, (0.7,0.3,0.2)), (32, (0.8,0.7, (
(4, (31, (0.5,0.2,0.6)), (32, (0.7,0.3,0.5)), (35, (0.4,0.2,0.6))) }.
xFrNS,PlquFrNS,&:{(éla <§1, (0.97 0.5, 0.1)>, (32,(0.9,0.8, 0.1)), <§3, (0.47 0.5, 0.2)>), (€2, <§1, (0.7, 0.3, 0.2)>, <§2, (0.8,0.7,(

5.14.2. Remark
It is a clear observation that for any two FrNSSs Xp,rns,p, and Xprns,pys

XprNs,p, UR XFrNS, P, . %vs Xrrns,py UE XFrNs, P, -
T
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5.15. Extended Intersection of Fermatean Neutrosophic Soft Sets
The extended intersection (Ng) of two FrNSSsisa FrNSS Xp,ng, p, where P3 = Py U P, with
associateship, indeterminacy, non-associateship for € € P; U P is defined as follows,

9P1,€7¢P1,€7¢P1,€ 1f€€P1\P2
9P3,é,¢P3,€,wP3,é = 9P2£7¢P2,€;¢P2,é ifé € P2 \ P1
mil‘l{epl,g, epz’g},min{¢phg7 ¢p2’g}7max{wp1’g,’(/}p27g} ifé e P1 n P2

5.16. Restricted intersection of Fermatean Neutrosophic Soft Sets

The restricted intersection (Ng) of two F'rNSSsisa FrNSS Xp,ns,p, where Ps = Py N P, with
associateship, indeterminacy, non-associateship € € P; N P; is defined as follows
Op, e =min{lp, ¢,0p, ¢}, dp, e = min{dp, ¢, 0p, ¢}, Vp,c = max{yp, ¢, Vp, ¢}

5.16.1. Example
Consider the FrNSSs Xp,ns,p, and Xp,ng, p, in example [5.1.1] and respectively. Then
their intersection will be,
%F’I‘NS,PlﬁExFTNS7P2:{(€1) <§1, (0.87 0.4, 0.
(é4, (51, (0.5,0.2,0.6)), (52, (0.7,0.3,0.5)), (s
xFrNS,leRxFTN&pQ ={(€1, <§1, (0.87 0.4, 0.

5.16.2. Remark
It is a clear observation that for any two FrNSSs Xp,ns,p, and Xprns, pys

XprNs,p, MR XFrNS, P, . %S Xrrns,py NE XFrNs, P, -
T

), (52, (0.9,0.7,0.3)), (33, (0.1,0.2,0.3))), (é2, (51, (0.6,0.2,0.4)), (5, (0.8,0
(0.4,0.2,0.6)))}.

1
i3>, (32,(0.9,0.7,0.3)), (33, (0.1,0.2,0.3))), (€2, (31, (0.6,0.2,0.4)), (32, (0.8,0

5.17. Proposition
Let Xp,ns,p, and Xprns,p, be two F'rNSSs, then

(i) Xprns,py MR XFrNsS,Ps - ENS XFrNS,P, XFrNS, Py
s

(ii) XFrNs,Pr s xFrNS,PQF %S:{FTNS,Pl NE XFrNS,Pss
T

(iii) Xprns,p, Ur XFrvs,ps B %SxFrNS,Pl s XFrNS, Py
T

(iv) XprNs,p > XFrNs,p, S < XrrNs,p UE XFrNS, Py
FrN
V) Xprns,p, NE XFrNs, P, . QNS XrrNs,pr UE XFrNS,Pss
T
vi) Xprns,p, MR XFrNs,p, C < XrrNs,p UR XFrNS, Py
FrN

vii) Xprns,p, MR Orrns, P = Orrns, s

(viii) Xprns,p, NE Dprns,p = Oprns, ps

(ix) Xprns,p, UR Urrns,py, = Uprns,py»

x) Xprys,p, UE Urrns,p = Urrns, P,

(xi) Xprns,p NRUprns,p = XprNs,Ps

(xii) Xprns,p NE UrrNs,p = XprNs,Ps

(xiil) Xprns,p Ug Oprns,p = Xprns, P,

(xiv) Xprns,p Ur Oprns,p = Xprns, P,

(xv) Xrrns,py FQNS Xprns,p, = XprNs,p, MR XFrNS,P, = XFrNS, Py
T

(xvi) XprNs, P, F%S Xprns,p, = Xrrns,p UE XFrNns,P, = XFrNS,Pss
T

.. C ~ ~ ’

(xvil) (Xprns,p, * Xprngp,) = }:CFT,N&H* %%TNS’PQ, where *x, % = Ug,Ug,Ng, Ng, (De Morgan’s law)
(xviii) Xprns,p % (Xprns, ¥ X prNs,py) = (Xpens o * Xprns, P ) ¥ (Xprns,p * Xprvs, p, ), Where *, % =
Ugr,Ug, Ng, Ng. (Distributive law)

6. ALGEBRAIC STRUCTURES

Algebraic structure is a set along with some operation/s or function satisfying a set of axioms. For
example semi group, group, ring, field, vector space, metric space and normed space etc.
A semigroup under a binary operation * is an algebraic structure satisfying closure and associative property
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Table 4. Nomenclature for algebraic structures

Notation Algebraic sructure
(MIE]’;S(]D))p7 *) Semigroup
P (D)p, *) Monoid
FrNS
FT%S(D)p, *, *) Semiring

Table 5. Semigroups and Subsemigroups

semigroup subsemigroups
(F ]II,;’S(]D)P’ UE) (FT]IJ,;TS(]D))PI ’ UE)
FrNs(D)P’ UR) (FTEJ’;TS(D)PI 'Ur
(FRS(D) ) (FTI[],;]S(]D))PI ’ ﬂE)
(FTELS(D) ) (FT]IJ’;TS(D)PI ’ mR)

under *, while monoid is a semigroup with identity element under * and semiring under *, % is the algebraic
structure having following properties,

(i) commutative monoid under *, (ii)) monoid under %, (iii) distributive laws hold, (iv) operating % to identity
element under * and any element of considered set turns back to identity element.

Let p I[I’;[S(ID))p and p IB);IS(D)PI be the collections of F'rIN.SSs over the domain ID associated with set

of parameters P and a subset P; of P, respectively. The algebraic structures associated with N, Ng, Ug and
U are established in tables[5] [6] [7] Table[d]is representing the nomenclature for defined algebraic structures.

7. FERMATEAN NEUTROSOPHIC SOFT TOPOLOGICAL SPACE

In this section, fermatean neutrosophic soft topological space (£'r N.ST'S) is established defining the
fermatean neutrosophic soft topology (F'r N.ST)).

7.1. Definition

Let FrNSS(D, Py) be a collection of all F'rN.SSs over the domain of discourse D and set of pa-
rameters P;. A subset Tyrpnsp, = {Xiprns,p, 1 ¢ € I} of FrNSS(D, P1) is named as F'r N ST if following
axioms are satisfied,

(D) Orrns, s UrrNs, Py € Tirnsprs

(ii) for a finite subset I’ of index set I, if X;prns, P, € Tfrnsp, fOr i € I' then ig/%ipﬁvs,pl € Tfrnsp,
that is the intersection of finite number of F'rN.SS in Tfyysp, also belongs to Tfrpep, »

(>iii) if xiFrNs_’pl € Tfrnsp, for ¢ € I then igI%iFTNS’Pl € Tfrnsp,

that is the union of any number of F'rIN.SS in Tyyysp, also belongs to Trpep, -

The triplet (D, Py, Tfrnsp, ) is named as FrNST'S.

Table 6. Commutative monoids

Monoid Identity Element
( P P,UE) Oprns,P
FT‘NS
(Fgrs(D)P’ UR) Orrns, P
(L ®)re)  Voovar
(L ®rron)  Coovar

IIMSCS



IIMSCS ISSN: 2704-1077 eISSN 2704-1069 0 303

Table 7. Semirings

Semiring (commutative, idempotent) for any Xr,ns,p € . ]I]’;IS(]D)) P

(F ]I;]S(D)Py Ug, ﬂE) Xprns,p NE Orrns,p = Orrns,p
(D)p,Ug, ﬁR) Xprns,p MR Orrns,p = Oprns, P

FTNS
(F E;,S(D) ,NE, UR) Xrrns,p Ur Urrns,p = Urrns,p
(F ]I;,S(D)P NE, UE) Xprns,p U Urprns,p = UrrNs, P
(F IE;,S(]D))P Nr, UR) Xrrns,p Ur Urrns,p = Urrns,p
(F IE;S(D)P Mg, UE) Xrrns,p UE Urrns,p = Urrns,p
(F IE;,S(]D))P Ur, ﬂR) Xprns,p MR Orrvs,p = Oprns, P
( P (D)p,Ur, ﬂE) Xrrns,p Ne Orrns,p = OreNs,p

FrNS

7.1.1. Example
LetD = {51,382,53}, P = {é1,€2,...,65} and P; = {é1,é2}. Let FrNSS(D, P;) be a collection of
all FrNSS over the domain of discourse D and set of parameters P;. Then (D, Py, Tfrpsp, ) is @ FrNSTS

with FrNST, Tprnspy = {0rrns, P Urrns,prs X1FrN S, Py, X2Fr NS, Py X3PrN S, Py, XaFrNs, P, |- Here
xlFrNS,Pl - {(617 <'§13 (0 8 0 4 O 1)) <§27 (0 9 077 03)>> <§3a (017 027 03)>) )

(é2, (31, (0.6,0.2,0.4)), (32, (0.8,0.7,0.3)), (33, (0.1,0.5,0.7))) },

XorrNs. P, = {(61, (51,(0.6,0.1,0.9)), (32, (0.7,0.6,0.8)), (35, (0.9,0.2,0.3))) ,
(é2, (31, (0.8,0.5,0.6)), (32, (0 7,0.5,0.6)), (33, (0.4,0.6,0 5},

Xspens.p, = {(61,<s1,(06 0.1 09)> (32,(0.7,0.6,0.8)), (35, (0.1,0.2,0.3))),,
(é2, (31, (0.6,0.2,0.6)), (32, (0.7,0.5,0.6)), (33, (0.1,0.5,0 N}

:{4FTNS P = {(61, <81, (0 8 0. 4 0. 1)> <827 (O 07, 03)>, <§3, (0 9 0. 2 0. 3)>)
(é2, (51, (0.8,0.5,0.4)), (32, (0.8,0.770.3)> (s, (0.4,0.6,0 5)) ).

Clearly, all axioms of F'r N ST are satisfied.

D) Orrns, s UrrNs, P, € Trrnspys

(ii) Intersection of all possible (non-trivial) finite collections of elements of 7,15, 1810 Tfypsp, as follows,

foralli = 1,2,3,4,0prns,p,NXirrns,py = Orrns,py and Uprns, p,NXirrns,py = Xiprns,pr- X1prns, 0 XoprNs P, =
Xsprns, P X1FrNs, P,V XarrNs, P, = X3FrNS, P X1FrNS, POV XaFrNs, Py = X1FrNS, P> XorrNs, P,V X3FrNs, P, =
Xsprns, P XorrNs, P,V XarrNs,p, = Xorrns,p, and X3prns, P, N XarrNs, Py = X3FrNS, P X1FrNS, P X2FrNs, PN X3
X3FrNS, Py

Xirrns,p N Xorrns, P N XarrNs, P = X3FrNS, Py >

Xirrns, Py N X3prns, Py O Xarrns, Py, = X3FrNS, P> XorrNs, P, N X3prNs,pr N XarrNs,p, = X3FrNS,Prs

Xiprns,p, N Xoprns,p, N Xspens,p, N Xarrns,p, = X3FrNs, P, -

(iii) Union of all possible (non-trivial) collections of elements of 7f,.,,sp, 1S in Tfrpsp, as shown,

forall i = 1,2,3,4, Oprnsp, U Xirrns,py = Xirrns,p, and Uprnsp, U Xipens,py = Uprns,p,-

X1rrNs,p U Xoprns, P, = XarrNs P X1irrns, P, U X3prns, Py, = X1PrNS, P X1FrNs, P U XaprNs,p =
X4rrNs, P XorrNs,P,U X3FrNs, Py = XorrNs, P> X2FrNs, P, U XaprNs, P, = Xarrns,p, and X3prns,p U XarrNs, P, =
X4rrNs,P» X1FrNs,pL U Xorrns,p U X3prns, Py = X4FrNS, Py s

Xirrns,p, U Xoprns, P U Xaprns, P, = XaFrNs, Py

Xirrns,p U Xsprns,p U XarrNs,p, = XaFrNS, Py XorrNs, P U X3prNs,p U XarrNs, P, = X4FrNS, Py

Xirrns,p U Xorrns,pr U X3prns, Pt U XarrNs, P, = XaFrNS, P, -

7.2. Indiscrete and Discrete Fermatean Neutrosophic Soft Topology

For FrNSS(D, P1), Tfrnsps = {0rrns,p,, Urrns,p, } is named as indiscrete F'r N ST and Tfypsp, =
FrNSS(D, Py) is named as discrete F'r N.ST.

7.3. Coarser and Finer Fermatean Neutrosophic Soft Topology

More than one F'rNST's could be defined over D with respect to the set of parameters P; and let

1 2 1 2 1 :
Tfrnspy @0d 77, o, be two such FrNST's such that 7¢,.,,.. C 7%, ., . Then, 7¢, . is named as coarser




304 a ISSN: 2704-1077 eISSN 2704-1069

(smaller or weaker) F'rNST than Tf,.mpl and T]%,_nspl is named as finer (larger or stronger) F'rNST than

1
Tfrnsp: -

7.3.1. Example
Consider the Fr N ST Tfpnsp, given in example and let T}msm = {0prNs.Py,
Urrns, P X1FPrNs,p, | be another FrNST over the same domain of discourse ID and set of parameters P;.

Clearly, T}msm C Tfrnsp, and hence coarser F'rNST than Tfppep, While Tfrpgp, is finer FrNST than

1
Tfrnspl .

7.4. Remark
Indiscrete F'r N ST is the coarsest F'r N ST while discrete F'r N ST is the finest F'rNST.

7.5. Tfrnsp,-Open and 7y,.,,5p, -Closed Fermatean Neutrosophic Soft Set

A FrNSS Xpyns,p, is named as Tf,pnep, -open FrNSS if it belongs to Tf,ysp, and it is named as
Tfrnsp, -closed FrNSSif X, g p, belongs to Tfrnsp, -

7.5.1. Example

Consider the F'rNST'S (D, Py, Tfrnsp, ) defined in example Here, X1rrns, Py,
xQFTN57p17:{3F7‘NS’p1,}:4FTNS,p1 are Tfrpsp, ~OPeN FrNSSswhile xSFrNS,Pl = {(&1, <§17 (01, 0.6, 08)), <§2, (0.3, 037 09)), <
(é2, (81, (0.4,0.8,0.6)), (52, (0.3,0.3,0.8)), (33, (0.7,0.5,0.1))) },

XGFTNS P = {(61, <81, (0 9 0. 9 0. 6)> <$27 (O 8 0. 4 0. 7)>, <§3, (0.3, 08, 09)>) 5

(€2, (51, (0.6,0.5,0.8)), (32, (0.6, 0.5,0.7)), (83, (0.5,0.4, 0.4)))},

XrprNs, P, = {(61, (81,(0.9,0.9, O.6)> (82,(0.8,0.4,0.7)), (35,(0.3,0.8,0.1))),

(é2,(51,(0.6,0.8,0.6)), (32, (0.6,0.5,0.7)), (33, (0 7,0.5,0.1)))},

Xsrrns,p, = {(é1, (51, (0.1,0.6,0.8)), (52, (0.3,0.3,0.9)), (33, (0.3,0.8,0.9))) ,

(é2, (81, (0.4,0.5,0.8)), (32, (0.3, 0.3,0.8)), (33, (0.57 0.4,0.4)))} are Tyypsp, -closed FrNSSs. As the com-
plement of these sets, X5, g p, = X1FrNS, Py Xrrns,py = X2FrNS P X7ppns Py = X3FrNS P X§prNs P, =
x4FrNS,P1 are in Tfrnsp; -

7.6. Remark

For all 7 in an index set I, let T}Tnspl be F'rNSTs over D with respect to the set of parameters P .
Then, OT}T”spl is also a F'r N.ST over D with respect to the set of parameters P, .
?

7.7. Fermatean Neutrosophic Soft Interior and Closure of a Fermatean Neutrosophic Soft Set

Let Xp,ng p, bea FrNSSina FrNSTS (D, P, Tfrnsp, )- The fermatean neutrosophic soft interior
and closure of X,y g p, are defined as follows,
Xprns,p, = A€ D, Pr, Thrnsp,) 1 A € Tornsp,, A S Xprns,p b

iFrNS.,Pl = O{A S (]D), Plvarnspl) T A S Tfrnspla%FrNS,Pl FgNS A}
"

Clearly, X%, vs Py is the union of 7f,.,sp, -open F'r NS subsets of Xp,ng p, and X FrNs,p, 1S the
intersection of T¢,psp, -closed F'r NS supersets of Xprn s, p, -

7.7.1. Example

Consider the FrNSTS (D, Py, Tfrnsp,) defined in example The FrNSS, Xorrns.p, =
{(é1, (31, (0.1,0.5,0.9)), (32, (0.2,0.2,0.9)), (33, (0.2,0.6,0.4))) ,
(é2,(51,(0.3,0.6,0.8)), (52,(0.2,0.2,0.9)), (83, (0.5,0.4,0.7))) } is F'rN.S subset of Tfpysp,-closed FrNSs
Xsrrnvs,p, and Xopeng, p,. By definition, Xop,ns,p, = Xsprns,p,. Also, the FrNSS, Xiorrns,p, =
((é1, (31, (0.8,0.5,0.1)), (32, (0.9, 0.8,0.2)),
(33, (0.9,0.4,0.2))), (2, (31, (0.9,0.6,0.2)), (32, (0.9,0.8,0.1)), (35, (0.7,0.7,0.4)))} is FrNS superset of
Tfrnsp,-open FrN'Ss Xsprns,p, and Xyprn s p, - By definition, X905, nvg p, = Xarrns,py-
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7.8. Theorem
Let Xprns,p, bea FrNSSina FrNSTS (D, Py, Tfrpsp, ). Then,
() X%, N5 p, 1S Tfrnsp,-open FrNSS.

@) Orns,p, = Oprns.pi-Uprys p, = Uprns.p and Xgyys py S Xrins.p
T

(iii) (onrNS,Pl)o = x%rN&Pl
Proof
The proof is directly followed by definition.

7.9. Theorem

- Let Xprns,p, bea FrNSSina FrNSTS (D, Py, Tfrpsp, ). Then,
(i) XprNs,py 1S Trnsp, -closed F'rNSS.
(i) Oprns.p, = Orrns.ps Urens,p, = Urrns,p, and Xppns,p, FT%VS XFrNS, P -
(i) Xprns.p, = XFrNs.p -
(iV) fFrNS,Pl is Tfrosp, -closed F'rNSS if and only if %FTNS,Pl = xFrNsvpl Proof
The proof is directly followed by definition.

7.10. Lemma

Let Xprns,p, bea FrNSSina FrNSTS (D, P1, Tfrnsp, ). Then,
0 (X, ns,p,)° = XErns Py
() (Xrrns,p )¢ = (Xpons.p,)0

Proof
Consider a FrNSS, Xp,ns,p, and let {A4;,7 € I} be the collection of Tfpy,sp,-open Fr NS subsets of
XprNs,p, defined as,

Ai = {(&,(5,(04,P, e(5), 0a,P, e(5),0a,p e(5)) : 5€D) : € € P1}. Then, X%, ng p, = {(6, (3, (mgﬂf 0P, e(5), maz da,r

5eD):ée Pryand (X%, xp,) = {(& (3, (miin A, e(3),1 = maz da,p, e (5), maa 9A1.P1,€(§))> se

]D)) 1€ € Pl}.

Clearly { Af, i € I} is the collection of 7,,sp, -closed F'r NS supersets of X, s p, and A = {(€, (5, (¥ a,p,,e(5),1 — ¢, Py e
5€D):é€ P} Then, Xy p, = {(& (5, (min ta,p.e(5) min (1= 6a,p, &) (5),maz ba,p,,e(5)))

5eD)iée P} = {(6 (5 (minvap,e(3),1 = maz oa,p,,e(5),maz a,p,e(5))) 5 € D) s é € P}
and hence (X%, g p,)* = i%‘TNS,Pl‘
The proof of (ii) is followed on similar lines.

7.11. Neighborhood of a Fermatean Neutrosophic Soft Set

Let X1prng,p, bea FrNSSin (D, Py, Tfrpsp, ) thena FrNSS, Xop,ns,p, is said to be a neighbor-

hood of X1rrns,p, if Xorrns,p, 1S @ Tornsp,-open FrNSS in (D, Pi, T¢rpsp, ) such that X1 prns, Py FCNS
T

XorrNs,p, -

8.  RELATION ON FERMATEAN NEUTROSOPHIC SOFT SET

In this section, relations on F'rNSS is established as that is used to develop decision making algo-
rithm. F'r NS Relation is a F'r N.S subset of cartesian product.

8.1. Cartesian Product

Let Xp,ns,p, and Xppns, p, be two FrNSSs. The cartesian product Xprns p, X Xprns,p, Of
FrNSSsXp,ns,p, and Xprns p, i8sa FrNSS Xprns pyxp, = {(€, (5, (0P, xPy.6(8), 0P x Pye(3), P x Py 6(8))) : 5 € D)
& € P x Py} where Op, ¢,0p, ¢,¥p ¢ : D — [0,1] such that for all 5 € Dand £ € P, x P,0 <
0P, xpy e (3) + Vb wpye(3) < land0 S O py e (8) + b xp, £ (3) + P« p, ¢(8) < 2, where

pixp, = min{fp,,0p,}, op, xp, = min{dp,, ¢p,} and Yp, « p, = max{¢Yp,,¥p, }
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8.2. Example

Let Xprns,p, = {(€é1, (51, (0.8,0.4,0.12)), (52, (0.9,0.7,0.3)), (53, (0.1,0.2,0.35))) ,
(€2, (51,(0.6,0.27,0.4)), (32, (0.83,0.7,0.3)), (33, (0.18,0.52,0.7)))} and
Xprns,p, = {(€2,(81,(0.7,0.65,0.3)), (52, (0.57,0.2,0.7)), (33, (0.29,0.6,0.37)) ) ,
(és,(81,(0.5,0.74,0.5)), (32, (0.46,0.5,0.63)), (33, (0.9,0.3,0.42))) }, then
Xprns,poxp, = {((é1,€2),(51,(0.7,0.4,0.3)), (52, (0.57,0.2,0.7)), (33, (0.1,0.2,0.37))) ,
((é1,€3), (51, (0.5,0.4,0.5)), (32, (0.46,0.5,0.63)), (33, (0.1,0.2,0.42))) ,
((éq,€2), (51, (0.6,0.27,0.4)), (32, (0.57,0.2,0.7)), (83, (0.18,0.52,0.7))) ,
((é2,€3), (51, (0.5,0.27,0.5)), (32, (0.46,0.5,0.63)), (33, (0.18,0.3,0.7))) }.

8.3. Fermatean Neutrosophic Soft Relation

Let Xprns,p, and Xppns, p, be two FrNSSs. A FrNS relation from Xp,ns p, to Xprns p, is a
FrNS subset RFTNS,KX]L of %FTNS,pIXpQ, where K x . C P; x Ps.

8.4. Example
Consider the FrNS sets and their cartesian product in example[8.2] Following are two FrNS relations
between xFrNS,Pl and xFrNspr,
RrrNs P xPy1 = XFrNsKxL =
{((é2, &2), (51, (0.4,0.2,0.5)), (52, (0.3,0.1,0.9)), (33, (0,0.3,0.7))) ,
((éa, €3), (51, (0.5,0.2,0.6)), (32, (0.46,0.5,0.7)), (83, (0.1,0.3,0.75)))}, with K = {é2} C Py and L =
{(%2, gg} Q PQ, and
RperNs PixPy2 = XFrNsKxL =
((é2,€2), (51, (0.6,0.27,0.4)), (32, (0.57,0.2,0.7)), (33, (0.18,0.52,0.7))) ,
((é2,€3), (51, (0.5,0.27,0.5)), (52, (0.46,0.5,0.63)), (33, (0.18,0.3,0.7))) }

8.5. Remark

As a relation from a set A with cardinality m to a set B with cardinality n is defined as a subset of
cartesian product A x B so the number of possible relations from set A to set B is 2" but in case of Fermatean
Neutrosophic soft set the number of F'rN.S relations between two sets is more than the number of classical
relations.

8.6. Domain and Range of Fermatean Neutrosophic Soft Relation

Let Ry, ns k<L be FINS relation from X g, ng p, = (f*, P1) to Xprns p, = (g%, P2) then its domain
and range is defined as,
Dom(Rp,nskxr) = (f*|x, K),K C P, : forall ¢ € K, there exists €; € L such that (€;,€;) € K x L}
Range(Rp,nskxL) = (¢%|L,L),L C P, : forall ¢; € L, there exists ¢; € K such that (¢;,¢,) € K x L}

8.7. Example
In example the domain and range of Rp, ns p, x P,,1 and Ry, ns—p, P, 2 are given as follows,
Dom(Rprns, P xpy,1) = Dom(Rp,ng pyxp,2) =
{(é2, (51, (0.6,0.27,0.4)), (52, (0.83,0.7,0.3)), (53, (0.18,0.52,0.7))) }
Range(Rr,ns P, xpPy,1) = Range(Rp,ns Py xpy2) =
{(&2, (51, (0.7,0.65,0.3)), (32, (0.57,0.2,0.7)}, (33, (0.29,0.6,0.37))),
(s, (81, (0.5,0.74,0.5)), (32, (0.46,0.5,0.63)), (83, (0.9,0.3,0.42))) }.

8.8. Inverse of a Fermatean Neutrosophic Soft Relation

Inverse of a FrNS relation R,y g kL 18 ]R;iNS’KX]L = Rp NS LxK-

8.9. Example

The inverse of FrNS relation Rg, ys, p, x p,,1 in example is,

Rty pyx pya=1((€2, €2), (31, (0.4,0.2,0.5)), (52, (0.3,0.1,0.9)), (33, (0,0.3,0.7))) ,
((€3,62), (31, (0.5,0.2,0.6)), (32, (0.46,0.5,0.7)), (33, (0.1,0.3,0.75))) }.
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8.10. Composition of Fermatean Neutrosophic Soft Relations
Let RFT'NS7P1 xXPy — {(€ZJ = (glv éj)a <§a (0P1 X P2,&ij (5), ¢P1 X P2,&;j (5)’ ¢P1><P2,§1‘,j (5))> 15€ D) :
&'j eph XPQ} be a F'r N S relation from P; to P, and RFTNS,P2><P3 = {(fgk = (éj, gk), <§, (0p1 X Py,&k (g), ¢p1 X P3,&k (5), L/Jpl N
& € Py x Ps} be FrN S relation from P, to Ps then composition of R, nys—p, p, and Rp,ns_p, p, is de-
fined as,
RrrNs,PixP, O RFrNS Pyx Py =
{(gbk = (éi’ ék)v <§’ (apl X P3,&ik (5)7 ¢P1><P37€ik (§)7wP1XP375ik (5)» 1€ ]D)) ik € P X Py
for which, there exist(é;, €;) € Py x Prand(é;, é;) € P, x Ps}, where
0Py x Py e = min{fp, X P2, Op, X Ps,&jk hop XP3,&ik = min{¢p, X Pa,&ij5 op, X P3,& b e X P3.&i = max{1p, X P2, VP, x P;
thatis Rprng, Py x Py © RErns, Pyx Py (€is €x) = Rprns, prxps (€05 €5) MR Rerns, Py x Py (€5, €x)

8.11. Example
Let P, = {é}, P, = {é2,é3}, P53 = {é4,é5} be the set of parameters and consider the FrNS
relations, Rp,ns.p,xp, = {((€2,€2), (51,(0.4,0.2,0.5)),
(32, (0.3,0.1,0.9)), (33, (0,0.3,0.7))),
((é2,¢3), (31, (0.5,0.2,0.6)), (32, (0.46,0.5,0.7)), (33, (0.1,0.3,0.75)))} and
Rprns,poxrs = {((é2,¢€4), (51, (0.6,0.2,0.3)), (52, (0.5,0.1,0.7)), (33, (0.15,0.2,0.7))) ,
((é2,¢€s5), (51, (0.3,0.52,0.6)), (52, (0.46,0.30.63)), (53, (0.5,0.2,0.77))) }, from P; to P and from P, to Ps,
respectively. Their composition is given by,
RrernNs,PixP, © RErNS PxPs = RErNg, PixPs =
{((é2,é4), (51, (0.4,0.2,0.5)), (32, (0.3,0.1,0.9)), (33, (0,0.2,0.7))) ,
((é2,¢€5), (51, (0.3,0.2,0.6)), (52, (0.46,0.3,0.7)), (33, (0.1,0.2,0.77))) }.

8.12. Proposition
Let Rp,yns, P x P, and Rp,ns, p,x p; be two F'r N S relations. Then
) (R;‘iNS,Pl X Py ) = RFrNS,P1 X Pa>s
(i) (Rprns, Py x Py © Rerns PyxPs) ™ = Rppns pyxp, © RI_’}"NS Pix Py
(iii) Rprvs, Py x P, © Rprns,p,x Py, implies RENS,P1 xPy = R}_«“TNS Pyx Py*
This section presents a decision-making algorithm using fermatean neutrosophic soft relations. A
sample problem is presented as an explanatory example.

9. SAMPLE PROBLEM
In a university, two friends A and B want to choose a common major for the bachelor’s degree from a

list of majors they both are interested in,

= {Data Analytics, Information Technology, BSCS}, according to their choice of parameters. Person A
wants a major that assure the highly paid job oppertunaties and provide an exposure to real world applica-
tion problems that is P;={future employbility, best paying, exposure to real world applications} and person B
wants a major that completes on time without any economic burden and associates with office-work jobs that is
P,={timely completion, economically efficient, office work job}. In our example problem, we have considered
hypothetical data using Fermatean Neutrosophic set that could be replaced by the results of a survey. In order
to choose a common major, we will take cartesian product of these sets to get all possible pairs of choices of
A and B. By applying decision making approach, we will choose a major that accomodates the choices of both
friends. Following figure shows the frame diagram for the stated problem.

9.1. Algorithm

The decision-making algorithm for our problem is explained in figure 2]

Step I: Input the Fermatean Neutrosophic Soft sets.
Xrprns,p, = {(€1,(51,(0.7,0.4,0.3)), (52, (0.57,0.2,0.7)), (33, (0.1,0.2,0.37))) ,
(€2, (81,(0.5,0.4,0.5)), (52, (0.46,0.5,0.63)), (33, (0.1,0.2,0.42))
51,(0.6,0.27,0.4)), (32, (0.57,0.2,0.7)), (33, (0.18,0.52,0.7)
1,(0.8,0.4,0.12)), (52, (0.9,0.7,0.3)), (33, (0.1,0.2,0.35)))
1 ( )

),
N} Xrens.p, = {(é4, (31, (0.5,0.27,0.5)), (3, (0.46,0.5,
0.6,0.27,0.4)), (32, (0.83,0.7,0.3)), (35, (0.18,0.52,0.7)))}.




308

ISSN: 2704-1077 eISSN 2704-1069
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friend A friend B
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exposure to real world applications office work job

deciding common major
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Data Analytics

Information Technology

Figure 1. schematic representation of the problem

information

score
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relational
table

comparison table

Figure 2. The decision making algorithm
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Table 8. Information System

Parameter §1=Data Analytics  S>=Information Technology 53=BSCS
1= future employbility (0.7,0.4,0.3) (0.57,0.2,0.7) (0.1,0.2,0.37)
&= best paying (0.5,0.4,0.5) (0.46, 0.5, 0.63) (0.1,0.2,0.42)
é3= exposure to (0.6,0.27,0.4) (0.57,0.2,0.7) (0.18,0.52,0.7)
real world applications (0.6,0.27,0.4) (0.57,0.2,0.7) (0.18,0.52,0.7)
€4= timely completion (0.5,0.27,0.5) (0.46,0.5,0.63) (0.18,0.3,0.7)
€s5= economically efficient (0.8,0.4,0.12) (0.9,0.7,0.3) (0.1,0.2,0.35)
&= office work job (0.6,0.27,0.4) (0.83,0.7,0.3) (0.18,0.52,0.7)

Table 9. Relational table between Xr,ns,p, and X, Ns, P,

(gi,éj) 51 So S3

(é1,é4) (0.5,0.27,0.5) (0.46,0.2,0.7)  (0.1,0.2,0.7)
(é1,65) (0.7,0.4,0.3)  (0.57,0.2,0.7)  (0.1,0.2,0.37)
(¢1,66) (0.6,0.27,0.4) (0.57,0.2,0.7)  (0.1,0.2,0.7)
(é2,61) (0.5,0.27,0.5) (0.46,0.5,0.63)  (0.1,0.2,0.7)
(é2,65) (0.5,0.4,0.5) (0.46,0.5,0.63)  (0.1,0.2,0.42)
(é2,66) (0.5,0.27,0.5) (0.46,0.5,0.63)  (0.1,0.2,0.7)
(és,é1) (0.5,0.27,0.5) (0.46,0.2,0.7)  (0.18,0.2,0.7)
(és,é5) (0.6,0.27,0.4) (0.57,0.2,0.7)  (0.1,0.2,0.7)
(és,é6) (0.6,0.27,0.4) (0.57,0.2,0.7)  (0.18,0.52,0.7)

The corresponding information system is represented in the table|8| In the table, the first entry (0.7,0.4,0.3)
shows that the association of the parameter “’future employment” with the major ”Data Analytics” has associ-
ateship ”0.7”, indeterminacy 0.4 and non-associateship ”0.3”.

Step II: Construct the Fermatean Neutrosophic Soft relational table as a result of their cartesian product as
shown in table [0l

Step III: Contruct the coomparison table with the reference of teble 9] evaluating the value 6 4 ¢ — ¢ for each
(é:,€;) as shown in table[10]

Step IV: Calculate the score value by adding the highest value in each row against S;, as shown in table
Step V: Select the object with highest score value.

Both friends will choose ”Data Analytics” as major.

9.2. Remark

Above mentioned technique provides an algorithm for decision-making application. The formulas
used for constructing comparison table and score function could be replaced by some other version of these
e.g. mentioned in [59}160]]. Also if two or more objects get same score value one may apply accuracy function
to get a precise decision [60].

Table 10. Comparison table between Xr,ns,p, and X, ns,p,

(éi,gj) 51 So 53

é1,61) 027 —04 04

08 0.07 —007
0.47 0.07 —04
027 0.33 —04
04 0.33 —0.12
027 0.33 —04
027 —.04 —032
0.47 0.07 —04
0.47 0.07 —0.32

€1, €5

[
=2

[
N

ot
— = |~ |~ |~ |~ |~ [~ — |~
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Table 11. Score Value of Each Object

Si highest value from comaparison table Score Value
s1 027+ 0.8+0.47+ 0.4+ 0.27 + 0.47 + 0.47 3.15

52 0.33+0.33 0.66

53 0 0

10. CONCLUSION

The main motivation of this paper is to define a hybrid neutrosophic structure to get a wider possible
range of neutrosophic numbers dealing with real-world problems. In this paper, a hybrid structure, fermatean
Neutrosophic Soft set is defined along with the basic entities of soft set theory as F'r NS subset, absolute null
FrNSS, relative null FrNSS, absolute whole F'rNSS, relative whole F'rNSS as well as Fr NS twisted
subset. A few operations as complement, extended and restricted intersection and union are defined. In section
6, algebraic structures as semigroups, subsemigroups, monoids and semirings are defined with respect to the
operations defined on F'rN.SSs. Section 7 explores the definition and properties of fermatean neutrosophic
soft topological spaces. Section 8 explores the relation defined on F'rNSSs named as FrN .S relation being
a FrNS subset of cartesian product of F'rNSSs. Section 9 deals with its application to decision-making
problems using a decision making algorithm. This paper provides fundamentals of F'rN.S\S that act as a base
to deal with different application problems and to define binary operations and algebraic srtucture with respect
to the binary operations. Another possible extension could be F'r NS hypersoft set.
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