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ABSTRACT: The linear regression model is not applicable when the response variable's value comes in the form of 

percentages, proportions, and rates, which are restricted to the interval (0, 1). In this situation, we applied the beta 

regression model (BRM) which is popularly used to model chemical, environmental and biological data.  The parameters 

in the model are often estimated using the conventional method of maximum likelihood. However, this estimator is 

unreliable and inefficient when the explanatory variables are linearly correlated- a condition known as multicollinearity. 

Thus, we developed the Jackknife Beta ridge and the modified Jackknife Beta ridge estimator for efficient estimation of 

the regression coefficient when there is multicollinearity. The properties of the new estimators were derived. We 

compared the performance of the estimator with the existing estimators theoretically using the mean squared error 

criterion. Furthermore, we conducted a simulation study and a chemical data to evaluate the new estimators’ 

performance. The theoretical comparison, simulation and real-life application results established the dominance of the 

proposed methods. 

Keywords: Beta regression model, linear regression model, multicollinearity, ridge, modified Jackknife, 

Jackknife ridge. 

1. INTRODUCTION

The beta regression model has been common in many areas, primarily economic and medical 

research, such as income share, unemployment rates in certain nations, the Gini index for each region, 

graduation rates in major universities, or the percentage of body fat in medical subjects. Beta regression 

model, like any regression model in the context of generalized linear models (GLMs), is used to examine the 

effect of certain explanatory variables on a non-normal response variable. However, in beta regression, the 

response component is restricted to an interval (0,1) such as proportions, percentages, and fractions.  

Multicollinearity is a popular issue in econometric modelling introduced by Frisch [14]. It indicates 

that there is a strong association between the explanatory variables. It is well established that the covariance 

matrix of the maximum likelihood (ML) estimator is ill-conditioned in the case of severing multicollinearity. 

One of the negative consequences of this issue is that the variance of the regression coefficients gets inflated. 

Therefore, the significance and the magnitude of the coefficients are affected. Many of the conventional 

approaches used to address this issue include: gathering additional data, re-specifying the model, or removing 

the correlated variable/s. 

Throughout recent years, shrinkage methods have become a commonly recognized and more 

effective methodology for solving this issue throughout regression models. To solve this issue, Hoerl and 

Kennard [17, 18] proposed the ridge estimator. The concept behind the ridge estimator is to apply a small 

definite amount (k) to the diagonal entries of the covariance matrix to increase the conditioning of this 

matrix, reduce the MSE and achieve consistent coefficients. For a review of this method in both linear and 

GLMs, see, e.g., Kibria and Lukman [20], Algamal [4], Abonazel [1], Rady et al. [29], Abonazel and 

Farghali [2], Farghali et al. [12], and Lukman et al. [23].  

One of the drawbacks of the ridge estimator is that estimated parameters are nonlinear functions of 

the ridge parameter and that the small selected might not be high enough to solve multicollinearity. 

2. BETA RIDGE REGRESSION

The Beta regression model was first introduced by Ferrari and Cribari-Neto [13] by relating the 

mean function of its response variable to a set of linear predictors through a link function. This model 

includes a precision parameter whose reciprocal is considered as a dispersion measure.  
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Suppose that 𝑦 is a continuous random variable that follows a beta distribution, the probability 

density function has the following form: 

f(𝑦;  𝜇, 𝜙) =
Γ(𝜙)

Γ(𝜇𝜙)Γ((1−𝜇)𝜙)
 𝑦 𝜇𝜙−1(1 − 𝑦)(1−𝜇)𝜙−1,                 (1) 

for 0 < 𝑦 < 1; 0 < 𝜇 < 1; 𝜙 > 0, and Γ(. ) is the gamma function, and 𝜙 is the precision parameter 

that can be written as in [6]: 

𝜙 =
1−𝜎2

𝜎2 . 

The mean and variance of the beta probability distribution are: E(𝑦) = 𝜇,   var(𝑦) =  𝜇(1 − 𝜇)𝜎2.  

The model allows 𝜇𝑖 , depending on covariates as follows: 

g(𝜇𝑖) = log (
𝜇𝑖

1−𝜇𝑖
) =  x𝑖

𝑇𝛽 = 𝜂𝑖,              (2) 

where g(. ) be a monotonic differentiable link function used to relate the systematic component with 

the random component, 𝛽 = (𝛽1, … , 𝛽𝑝)
𝑇

 is a 𝑝 × 1 vector of unknown parameters, x𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝)𝑇 is the 

vector of 𝑝 regressors, and 𝜂𝑖 is a linear predictor. 

 

Estimation of the beta regression parameters is done by using the ML method [10]. The log-

likelihood function of the beta regression model is given by: 

ℒ(𝜇𝑖 , 𝜎2; 𝑦𝑖) =  ∑ {log Γ (
1−𝜎𝑖

2

𝜎2 ) − log Γ (𝜇𝑖 (
1−𝜎𝑖

2

𝜎2 )) − log Γ ((1 − 𝜇𝑖) (
1−𝜎𝑖

2

𝜎2 ))  +𝑛
𝑖=1

(𝜇𝑖 (
1−𝜎𝑖

2

𝜎2 ) − 1) log(𝑦𝑖) + ((1 − 𝜇𝑖) (
1−𝜎𝑖

2

𝜎2 ) − 1) log(1 − 𝑦𝑖)}.                  (3)  

Differentiating the log-likelihood in Eq. (3) with respect to 𝛽 gives us the score function for 𝛽 which 

is given by: 

𝑆(𝛽) = 𝜙𝑋𝑇𝐴(𝑦∗ − 𝜇∗),               (4) 

where 𝐴 = diag (
1

g′(𝜇1)
, … ,

1

g′(𝜇𝑛)
),      𝑦∗ = (𝑦1

∗ , … , 𝑦𝑛
∗ )𝑇, 𝜇∗ = (𝜇1

∗ , … , 𝜇𝑛
∗ )𝑇, 𝑦𝑖

∗ = log (
𝑦𝑖

1−𝑦𝑖
), and 

𝜇𝑖
∗ =  𝜓 (𝜇𝑖 (

1−𝜎𝑖
2

𝜎2 )) − 𝜓 ((1 − 𝜇𝑖) (
1−𝜎𝑖

2

𝜎2 )), such that 𝜓(. ) denoting the digamma function. The iterative 

reweighted least-squares (IWLS) algorithm or Fisher scoring algorithm used for estimating 𝛽 [8, 9]. The 

form of this algorithm can be written as: 

𝛽(𝑟+1) = 𝛽(𝑟) + (𝙸𝛽𝛽
(𝑟)

)
−1

 𝑆𝛽
(𝑟)(𝛽), 

 

where 𝑆𝛽
(𝑟)

 is the score function defined in Eq. (4), and 𝙸𝛽𝛽
(𝑟)

 is the information matrix for 𝛽, see 

Espinheira et al. (2019) for more details. The initial value of 𝛽 can be obtained by the least-squares 

estimation, while the initial value for each precision parameter is: 

𝜙̂𝑖 =
𝜇̂𝑖(1−𝜇̂𝑖)

𝜎̂𝑖
2 ,          (5) 

where 𝜇̂ and 𝜎̂𝑖
2 values are obtained from linear regression. Given 𝑟 =  0, 1, 2, … is the number of 

iterations that are performed, convergence occurs when the difference between successive estimates becomes 

smaller than a given small constant. At the final step, the ML estimator of 𝛽 is obtained as: 

𝛽̂BR =  (𝑋𝑇𝑊̂𝑋)
−1

𝑋𝑇𝑊̂𝑧̂,        (6) 

 

where 𝑋 is an 𝑛 × 𝑝 matrix of regressors, 𝑧̂ = 𝜂̂ + 𝑊̂−1𝐴̂(𝑦∗ − 𝜇∗), and 𝑊̂ = diag(𝑤̂1, … , 𝑤̂𝑛);   

𝑤̂𝑖 =
(1−𝜎̂𝑖

2)

𝜎̂𝑖
2 {𝜓′ (

𝜇̂𝑖(1−𝜎̂𝑖
2)

𝜎̂𝑖
2 ) + 𝜓′ (

(1−𝜇̂𝑖)(1−𝜎̂𝑖
2)

𝜎̂𝑖
2 )}

1

{g′(𝜇̂𝑖)}2. 

 

Here, 𝑊̂ and 𝐴̂ are the matrices W and A, respectively, evaluated at the ML estimator. The ML 

estimator of 𝛽 is normally distributed with asymptotic mean vectors 𝐸(𝛽̂BR) = 𝛽 and asymptotic covariance 

matrix: 

Cov(𝛽̂BR) =
1

𝜙
(𝑋𝑇𝑊̂𝑋)

−1
.                                         (7) 

Hence the asymptotic mean squared error (MSE) [11] of the ML estimator based on the asymptotic 

covariance matrices is:  

MSE(𝛽̂BR) = tr [
1

𝜙
(𝑋𝑇𝑊̂𝑋)−1] =  

1

𝜙
∑

1

𝜆𝑗

𝑝
𝑗=1               (8) 

where 𝜆𝑗 is the eigenvalue of the 𝑋𝑇𝑊̂𝑋 matrix. 
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Recently, Abonazel and Taha [3] and Qasim et al. [27] introduced the beta ridge regression (BRR) 

estimator as follows: 

𝛽̂BRR =  (𝑋𝑇𝑊̂𝑋 + 𝑘I)
−1

𝑋𝑇𝑊̂𝑧̂,        (9) 

where 𝑘 > 0, and ‖𝛽̂BRR‖ < ‖𝛽̂BR‖. It can note that if 𝑘 = 0, then 𝛽̂BRR = 𝛽̂BR. Now, let 𝛬 =

diag(𝜆1, … , 𝜆𝑝) = 𝑄𝑇𝑋𝑇𝑊̂𝑋𝑄, and 𝛼 = 𝑄𝑇𝛽, where 𝜆1 ≥ ⋯ ≥ 𝜆𝑝 ≥ 0, and 𝑄 is the matrix whose columns 

are the eigenvectors of the matrix 𝑋𝑇𝑊̂𝑋. Then the MSE of the BRR estimator is:  

MSE(𝛽̂BRR) = E(𝛽̂BRR −  𝛽)𝑇  E(𝛽̂BRR −  𝛽), 

= 
1

𝜙
∑

𝜆𝑗

(𝜆𝑗+𝑘)2

𝑝
𝑗=1 + 𝑘2 ∑

𝛼𝑗
2

(𝜆𝑗+𝑘)2

𝑝
𝑗=1 .             (10) 

      
The first term in Eq. (10) is the asymptotic variance, and the second term is the squared bias.  

 

3. PROPOSED ESTIMATORS 

 

Jackknife Beta Ridge Regression  

In the context of the linear regression model, the Jackknife procedure has been proposed by Singh et 

al.  [31] to alleviate the problem of bias in generalized ridge estimator. The theoretical and application of the 

jackknife estimator have been studied by several authors [24, 15, 7, 32, 33, 19, 34, 35].  

Now, we introduce the Jackknifed ridge estimator of the beta regression. Based on Λ and Q  

matrices, the beta regression estimator of Eq. (6) can be re-written as 

 BR BR
ˆ ˆ ,=β Q

         (11) 

where 
1

BR
ˆˆ ˆT z −=Λ M W

; with =M XQ . As a result, the BRR estimator of Eq. (9) is re-

written as:  

   (12) 

Following the idea of Jackknife approach [16], let ( )iz − , ( )i−m
, and ( )i−W

, respectively, are the 

ith row deleted from the vector z, the ith row deleted from the matrix M , and the ith row and column deleted 

from the matrix W . Let  BRR(- )
ˆ

i
 be given by Eq. (12) with replacing M , W , and z by ( )i−M

, ( )i−W
, 

and ( )iz − , thus , 

 

1
BRR(- ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆˆ ˆ( ) ,T T
i i i i i i ik z −

− − − − − −= +M W M I M W
   (13) 

where 

1
( ) ( ) ( )

ˆ( )T
i i i k −

− − − +M W M I
 is calculated according to Sherman-Morrison Woodbury 

theorem [30] as 

 

1 1
( ) ( ) ( )

1 1

1

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )
,

ˆ1 ( )

T T
i i i

T T T
i i

T T
i i

k k

k k

k

− −
− − −

− −

−

+ = +

+ +
+

− +

M W M I M WM I

M WM I m m M WM I

m M WM I m
   

and ( ) ( ) ( )
ˆ ˆˆ ˆ ˆ .T T

i i i i iz z z− − − = −M W M W m
 Then, Eq. (13) can be expressed as  

  

1
BRR

BRR(- ) BRR 1

ˆ ˆˆ( ) ( )
ˆ ˆ .

ˆ1 ( )

T T T
i i i

i T T
i i

k z

k


 

−

−

+ −
= −

− +

M WM I m m

m M WM I m
   

 Using the weighted pseudo values [16],  which are calculated as 

 

1
BRR BRR BRR(- )

ˆˆ ˆ ˆ(1 ( ) )( ).T T
i i i iT n k  −= + − + −m M WM I m

   
Then, the Jackknifed beta ridge regression estimator (JBRR) is defined as  

 

1
JBRR BRR BRR

1

ˆˆ ˆ ˆˆ( ) ( ).
n

T T T
i i i

i

k z  −

=

= + + −M WM I m m

   

Let 
ˆ( )TB k= +M WM I

, then JBRR̂
 can be further simplified as 

1
BRR

ˆˆ ˆ( ) .Tk z −= +Λ I M W
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1 2 2

JBRR BRR BR
ˆ ˆ ˆ( ) ( ) ,k B k B  − −= − = −I I

     (14) 

Modified Jackknife Beta Ridge Regression  

In the linear regression model, the modified Jackknife ridge estimator has been proposed by Batah, 

et al. [9] by combining the ideas of the generalized ridge estimator and Jackknifed ridge estimator, which is 

given by Singh et al.  [31]. In a similar way, we propose a new estimator of JBRRτ̂
. Following Algamal [4], 

the proposed estimator, which is denoted by modified Jackknifed beta ridge estimator (MJBRR), is 

designated as in the case of the JBRR̂
 by replacing BR̂

 with BRR̂
. The MJBRR estimator is defined as: 

 
2 2 1

MJBRR BR
ˆ ˆ( )( ) .k B k B − −= − −I I

     (15) 

The asymptotic properties of MJBRR̂
are defined as, respectively 

 

( ) ( )

( )
MJBRR MJBRR

1 2 2 1

ˆ ˆBias

,

E

k k B k B B

  

− − −

= −

= − + −I
    (16) 

 

( )   MJBRR MJBRR MJBRR MJBRR MJBRR

1 1

ˆ ˆ ˆ ˆ ˆvar ( ) ( )

,

T

T

E E E    

− −

= − −

= HΛ H
  (17) 

where 
2 2 1( )( )k B k B− −= − −H I I

, and 

 

( ) ( ) ( ) ( )

( )

( )

MJBRR MJBRR MJBRR MJBRR

1 1 1 2 2 1 1

1 2 2

ˆ ˆ ˆ ˆMSE var Bias Bias

.

T

T T

T

k k B k B B B

k k B k B

   

 − − − − − −

− −

= +

= + + −

 + −

HΛ H I

I
  (18).  

 

 

 

 

 

4. SUPERIORITY OF PROPOSED ESTIMATORS IN TERMS OF MSE 

 

In general, to compare the two different estimators, one should be concerned with their performance 

in terms of MSE. For two given estimators 1β̂  and 2β̂  of 
β

, the estimator 2β̂  is said to be superior to 1β̂  

under the MSE criterion if and only if  (iff) 1 2
ˆ ˆ=MSE( ) MSE( ) 0 − β β

.  

Lemma 1: [21]  Let G  is a 
p p

 positive definite matrix, a is a 
1p 

 vector, and c  is a 

positive constant. Then 
Tc aa−G

 is a nonnegative definite if and only if 
1Ta a c− G

is hold (Sherman 

and Morrison, 1950).  

Comparison of MJBRR̂
with BRR̂

 

The bias, variance, and the MSE of  BRR̂
are respectively defined as  

 

( ) ( )BRR BRR

1

ˆ ˆBias

,

E

k B

  

−

= −

=
   

 

( )   BRR BRR BRR BRR BRR

1 1 1 1

ˆ ˆ ˆ ˆ ˆvar ( ) ( )

( ) ( ) ,

T

T

E E E

k B k B

    

− − − −

= − −

= − −I Λ I
   

and 
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( ) ( ) ( ) ( )BRR BRR BRR BRR

1 1 1 1 2 1 1

ˆ ˆ ˆ ˆMSE var Bias Bias

( ) ( ) .

T

T Tk B k B k B B

   

 − − − − − −

= +

= − − +I Λ I
  (19) 

Theorem 1: The proposed estimator MJBRR̂
is superior to the BRR̂

 estimator if and only if (iff)  

 

1
1 2 1 1 1( ) 1,T Ta F k B B F a 

−
− − − − + 

 
J

    

where 
1 1 1 2 2 2 2( ) ( ) ( ( ))Tk B k B k B k B− − − − −= − − + + −J I Λ I I I

 and 

( )
1

1 2 2 1F k k B k B B
−

− − − = + −
 

I
. 

proof From Eq. (18) and Eq. (19) the difference in MSE is  

 

BRR MJBRR

1 2 1 1 2 1 1

ˆ ˆ1=MSE( ) MSE( )

,T T Tk B B k B B

 

  − − − − −

 −

= + −J Ω Ω
   

1 2 2( )k B k B− −= + −Ω I
 is a positive definite matrix. It is clear that J  is a positive definite 

matrix. As a result, the 1 is a nonnegative definite iff 
TF F  is a nonnegative definite matrix. Thus,  

 
1 2 1 1( ) .T T T TF F F k B B F  − − − = + −J

   

Because 
1 2 1 1( )Tk B B − − −+J

 is a symmetric positive definite matrix, using Lemma 1, it is 

concluded that 
TF F is nonnegative definite iff 

1
1 2 1 1 1( ) 1T Ta F k B B F a 

−
− − − − + 

 
J

 is 

satisfied. Consequently, the proof is completed. 

Comparison of MJBRR̂
with JBRR̂

 

 The bias, variance, and the MSE of  JBRR̂
are respectively defined as  

 

( ) ( )JBRR JBRR

2 2

ˆ ˆBias

,

E

k B

  

−

= −

=
   

 

( ) ( ) ( )JBRR JBRR JBRR JBRR JBRR

1 2 2 1 2 2

ˆ ˆ ˆ ˆ ˆvar

( ) ( ) ,

T

T

E E E

k B k B

    

− − − −

   = − −   

= − −I Λ I
   

and 

 

( ) ( ) ( ) ( )JBRR JBRR JBRR JBRR

1 2 2 1 2 2 4 2 2

ˆ ˆ ˆ ˆMSE var Bias Bias

( ) ( ) .

T

T Tk B k B k B B

   

 − − − − − −

= +

= − − +I Λ I
  

           (20) 

Theorem 2: The proposed estimator MJBRR̂
is superior to the JBRR̂

 estimator if and only if (iff)  

 

1
1 4 2 2 1( ) 1,T Ta F k B B F a 

−
− − − − + 

 
L

   

where 

2 2 1 2 2 1 1( ) ( ) ( ( ))Tk B k B k B k B− − − − − = − − + −
 

L I Λ I I I
.  

proof  From Eq. (18) and Eq. (20) the difference in MSE is  

 

JBRR MJBRR

1 4 2 2 2 1 1

ˆ ˆ2=MSE( ) MSE( )

,T T Tk B B k B B

 

  − − − − −

 −

= + −L Ω Ω
   

1 2 2( )k B k B− −= + −Ω I
 is a positive definite matrix. It is clear that L  is a positive definite 

matrix. As a result, the 2 is a nonnegative definite iff 
TF F  is a nonnegative definite matrix. Thus,  

 
1 4 2 2( ) .T T T TF F F k B B F  − − − = + −L
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Because 
1 4 2 2( )Tk B B − − −+L

 is a symmetric positive definite matrix, using Lemma 1, it is 

concluded that 
TF F is nonnegative definite iff 

1
1 4 2 2 1( ) 1T Ta F k B B F a 

−
− − − − + 

 
L

 is 

satisfied. Consequently, the proof is completed. 

 

5. SIMULATION STUDY 

 

In this section, the estimators’ performance is investigation through a simulation study. Correlated 

explanatory variables are generated in line with the work of Kibria and Lukman [20]: 

pjnix piijij ...,,2,1,...,,2,1,)1( 1,

2/12 ==+−= +
                        (21) 

where ij
  are independent standard normal pseudo-random numbers and 

90.0=
, 0.99 and 

999.0 are the degree of correlation between any two explanatory variables. The n  observations for the 

response variable 
y

 are determined by the following equation: 

( ) ,~ ii By
           (22) 

where 
( ) ( )( )exp / 1 expi i ix x   = +

 for 
1,2,..., .i n=

 The regression parameter 


 is 

chosen such that  

1ˆ

1

2 =
=

p

i

i
 [21, 12]. The sample sizes n are 30, 50 and 100, while the number of 

explanatory variables is taken to be 4 and 8. The simulation study is conducted by adopting the R 

programming language with the help of betareg{} package [28]. Following Qasim et al. [27], the MSE and 

the median squared error (MdSE) were employed to evaluate the estimators’ performance: 
2000

* * *

1

1
( ) ( ) ( )

2000
j j

j

MSE     
=

= − −
                                    (23) 

2000
* * *( ) ( ) ( )j j j

MdSE Median     = − − 
                  (24) 

 

where j is the number of replications which is set to be 2000 and 

*

j
 is the estimated vector of   

in the jth replication. 

The initial values for parameter vector 𝛽 and 𝜙 are estimated by following Ferrari and Cribari-Neto 

[13], Abonazel and Taha [3], and Qasim et al. [27], in the betareg{} package. 

The biasing parameter for beta ridge and Jackknife beta ridge was determined using the following 

biasing parameters:  

 

1

2

1

ˆ
ˆ

ˆ
p

i

j

p
k




=

=


                        (25) 

2

2

1

ˆ
ˆ

ˆ
p

i

j

p
k




=

=


                         (26) 

The simulation results in terms of the MSE and MdSE are presented in Table 1 and 2. Table 1 

displays the results when 𝑝 = 4, 𝜙 = 1 & 5, 𝜌 = 0.90,0.99 & 0.999, and 𝑛 = 30,50, & 100. While the 

results when 𝑝 = 8, with the same values of 𝜙, 𝜌, 𝑎𝑛𝑑 n, are presented in Table 2. 

The results from Table 1 and 2 show that the Jackknife Beta ridge regression with biasing parameter 

k2 has the smallest mean and median squared error for all the considered sample sizes.  The maximum 

likelihood estimator possesses the least performance due to the presence of multicollinearity. The ridge 

regression estimator outperforms the maximum likelihood estimator. It is also evident from the result that the 

median squared error exhibit smaller values than the mean squared error. The result in this study agrees with 
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the conclusion made in the context of the linear regression model. The jackknife version of the ridge 

estimator produces an estimator with smaller MSE and MdSE. When the values of 


and 𝜙 increases the 

MSE and MdSE also increases but decreases as the sample sizes increases from 30 to 100. In general, the 

proposed estimator performs better than the other estimators for all simulated cases.   

We observed that the MSE and MdSE values of all the estimators increased as 𝑝 increases. The 

Jackknife beta ridge estimator outperform BR and BRR under all specifications Overall, the improvement in 

the proposed over the beta ridge regression is significant. 

 

Table 1: Simulated MSE and MdSE of the estimators when p=4 

 
Estimator

s 

𝝓 = 𝟏   𝝓 = 𝟓 

𝝆 = 𝟎. 𝟗𝟎 
 

𝝆 = 𝟎. 𝟗𝟗 
 

𝝆 = 𝟎. 𝟗𝟗𝟗 
 

𝝆 = 𝟎. 𝟗𝟎 
 

𝝆 = 𝟎. 𝟗𝟗 
 

𝝆 = 𝟎. 𝟗𝟗𝟗 

MSE MdS

E 

  MSE MdSE   MSE MdSE   MSE MdS

E 

  MSE MdSE   MSE MdSE 

 
n = 30 

BR 30.58

6 

23.41

7 

 289.99

6 

225.03

9 

 2942.37

4 

2282.07

8 

 40.11

2 

30.49

5 

 396.44

6 

305.27

6 

 4072.00

7 

3202.01

8 

BRR1 29.38

2 

22.19

4 

 278.03

8 

212.13

3 

 2821.53

3 

2138.16

1 

 36.93

6 

26.79

6 

 364.74

0 

272.92

6 

 3757.09

0 

2852.53

9 

BRR2 29.40

1 

22.29

6 

 256.88

0 

193.16

3 

 2098.05

3 

1449.93

3 

 33.68

3 

24.01

2 

 245.55

9 

161.49

4 

 1329.63

6 733.566 

JBRR1 29.33

5 

22.17

0 

 277.54

8 

211.40

2 

 2816.60

2 

2137.15

6 

 36.74

0 

26.54

4 

 362.74

9 

270.92

6 

 3737.74

7 

2822.82

1 

JBRR2 29.36

8 

22.27

4 

 254.57

7 

190.11

4 

 1989.67

3 

1331.21

4 

 33.12

5 

23.41

1 

 223.79

4 

141.48

7 

 

946.013 395.758  
n = 50 

BR 15.99

8 

12.82

8 

 150.22

7 

122.69

9 

 1504.98

3 

1160.33

7 

 22.59

1 

17.71

1 

 221.17

1 

170.77

8 

 2215.90

3 

1696.67

2 

BRR1 15.32

1 

12.06

8 

 143.17

8 

114.72

2 

 1433.36

0 

1079.62

2 

 20.87

1 

15.86

7 

 203.11

0 

152.04

2 

 2030.64

9 

1498.33

9 

BRR2 15.47

8 

12.26

4 

 134.69

7 

105.37

2 

 1100.90

8 781.109 

 19.70

9 

14.93

7 

 148.02

4 

100.22

7 

 

801.490 452.185 

JBRR1 15.29

5 

12.03

2 

 142.88

7 

114.33

6 

 1430.32

9 

1077.08

8 

 20.76

8 

15.79

2 

 201.95

8 

150.89

4 

 2018.86

1 

1487.48

9 

JBRR2 15.46

6 

12.25

3 

 133.76

0 

104.37

9 

 1051.64

6 721.596 

 19.50

3 

14.68

3 

 138.10

7 89.916 

 

592.430 267.100  
n = 100 

BR 15.24

6 

11.82

9 

 150.64

3 

121.29

4 

 1516.27

6 

1157.22

6 

 21.60

9 

17.30

0 

 215.72

9 

164.71

7 

 2176.91

2 

1736.25

4 

BRR1 14.54

1 

11.13

5 

 143.19

9 

112.91

6 

 1445.69

2 

1079.24

8 

 19.78

5 

15.29

6 

 196.79

5 

144.60

9 

 1994.67

1 

1536.78

0 

BRR2 14.69

9 

11.30

4 

 133.81

5 

104.53

3 

 1099.87

9 757.181 

 18.51

8 

14.20

9 

 137.71

7 91.772 

 

740.585 424.652 

JBRR1 14.51

2 

11.11

3 

 142.88

4 

112.72

8 

 1442.75

4 

1076.49

3 

 19.67

2 

15.16

4 

 195.57

9 

143.36

4 

 1983.35

2 

1521.91

2 

JBRR2 14.68

7 

11.29

2 

 132.78

7 

103.25

9 

 1049.48

2 701.777 

 18.28

7 

14.00

6 

 126.72

3 80.106 

 

524.170 246.487 

 

Table 2: Simulated MSE and MdSE of the estimators when p=8 

 
Estimator

s 

𝝓 = 𝟏   𝝓 = 𝟓 

𝝆 = 𝟎. 𝟗𝟎 
 

𝝆 = 𝟎. 𝟗𝟗 
 

𝝆 = 𝟎. 𝟗𝟗𝟗 
 

𝝆 = 𝟎. 𝟗𝟎 
 

𝝆 = 𝟎. 𝟗𝟗 
 

𝝆 = 𝟎. 𝟗𝟗𝟗 

MSE MdS

E 

  MSE MdSE   MSE MdSE   MSE MdS

E 

  MSE MdSE   MSE MdSE 

 
n = 30 

BR 81.30

5 

66.29

1 
  

822.32

8 

678.71

2 
  

8432.46

7 

7146.82

6 
  

103.40

3 

86.73

4 
  

1053.46

7 

867.26

5 
  

10509.42

0 

8847.77

3 

BRR1 77.70

1 

63.19

5 
  

785.94

6 

642.88

9 
  

8059.13

0 

6757.85

6 
  94.143 

77.81

3 
  963.408 

779.32

0 
  9602.443 

7914.73

0 

BRR2 77.50

2 

63.24

8 
  

715.79

5 

583.29

9 
  

5860.64

3 

4722.80

2 
  84.202 

69.20

6 
  636.187 

491.23

5 
  3502.550 

2437.06

2 

JBRR1 77.54

1 

63.15

6 
  

784.44

1 

642.11

7 
  

8043.53

9 

6739.79

0 
  93.496 

77.28

6 
  957.439 

774.15

9 
  9542.867 

7794.37

7 

JBRR2 77.34

5 

63.05

6 
  

706.36

7 

570.46

3 
  

5506.20

3 

4370.40

2 
  82.139 

66.90

3 
  576.019 

434.45

5 
  2661.353 

1682.29

2 
 

n = 50 

BR 49.80

9 

43.52

7 
  

494.12

9 

434.88

5 
  

4964.02

5 

4483.55

9 
  66.895 

57.74

2 
  651.306 

559.32

3 
  6685.727 

5758.25

9 

BRR1 48.03

8 

41.36

4 
  

476.43

5 

418.96

8 
  

4786.66

1 

4294.84

2 
  62.228 

52.83

7 
  605.365 

511.67

8 
  6220.532 

5324.82

3 
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BRR2 48.19

8 

41.70

5 
  

446.85

6 

390.23

7 
  

3719.03

6 

3185.61

7 
  57.909 

49.39

2 
  435.625 

353.62

3 
  2479.658 

1858.98

2 

JBRR1 47.98

7 

41.31

5 
  

475.93

7 

418.49

4 
  

4781.60

5 

4289.20

5 
  61.999 

52.69

1 
  603.120 

509.92

8 
  6198.033 

5309.11

4 

JBRR2 48.16

2 

41.63

6 
  

444.11

2 

387.71

0 
  

3570.72

4 

2999.81

1 
  57.244 

48.93

5 
  406.105 

325.17

8 
  1856.711 

1247.04

1 
 

n = 100 

BR 45.62

9 

41.49

5 
  

446.49

8 

399.97

4 
  

4451.45

2 

3938.16

3 
  63.153 

56.45

4 
  629.173 

568.14

6 
  6365.432 

5794.77

0 

BRR1 43.75

4 

39.71

1 
  

427.68

8 

381.14

1 
  

4262.34

8 

3765.36

6 
  58.315 

51.62

8 
  580.080 

516.48

4 
  5873.277 

5302.99

3 

BRR2 43.86

2 

39.65

7 
  

395.26

8 

349.16

9 
  

3129.50

7 

2697.43

7 
  53.599 

46.84

8 
  393.772 

336.24

4 
  2026.013 

1590.71

5 

JBRR1 43.69

7 

39.66

6 
  

427.11

4 

380.54

6 
  

4256.68

4 

3761.80

3 
  58.067 

51.42

1 
  577.581 

514.17

9 
  5848.565 

5277.01

7 

JBRR2 43.81

9 

39.62

4 
  

392.01

4 

346.18

6 
  

2959.99

0 

2535.45

2 
  52.841 

46.19

2 
  359.924 

302.36

3 
  1397.914 

1008.48

2 

  

 

6. GASOLINE YIELD DATA 

 

This chemical dataset was originally obtained by Prater [26], and later used by the following 

authors: Ospina et al. [25], Karlsson et al. [21]. The dataset contains 32 observations on the response and on 

the independent variables. The variables in the study are described as follows: The dependent variable y is the 

proportion of crude oil after distillation and fractionation while the explanatory variables are crude oil gravity 

(gravity), vapor pressure of crude oil (pressure), temperature at which 10% of the crude oil has vaporized 

(temp10) and temperature at which all petrol in the amount of crude oil vaporizes (temp). Atkinson [5] 

analyzed this dataset using the linear regression model and observed some anomaly in the distribution of the 

error. Recently, Karlsson et al. [21] shows that the beta regression model is more suitable to model the data.  

We used the condition index to diagnose if the model is multicollinearity free. Condition index (CI) is 

defined as follows: 

𝐶𝐼 = √
max eigenvalue

min eigenvalue
                         

(27) 

According to literature if the CI exceeds 1000, there is severe multicollinearity. The CI for the 

dataset under study is 11281.4 which signal severe multicollinearity. The Beta regression estimates for each 

of the estimation techniques and their corresponding mean squared error are shown in Table 3.   

 

Table 3: The estimated coefficients and MSE values 

Coefficient  BR BRR1 BRR2 JBRR1 JBRR2 

Intercept -2.6949 -0.0280 -0.3142 -0.0697 -0.0017 

Gravity 0.0045 -0.0118 -0.0096 -0.0111 -0.0120 

Pressure 0.0304 -0.0385 -0.0331 -0.0396 -0.0391 

temp10 -0.0110 -0.0182 -0.0175 -0.0182 -0.0183 

temp 0.0106 0.0106 0.0106 0.0106 0.0106 

MSE 144.5621 0.13019 2.071377 0.193196 0.08801 

 

The result show that the ridge and Jackknife ridge regression estimates possess the same regression 

coefficient sign except the maximum likelihood estimate. This is traceable to one of the consequences of 

multicollinearity on the maximum likelihood estimator as mentioned by Lukman and Ayinde [22]. The 

proposed method has the lowest mean squared error. This agree with the literature that the jackknife ridge 

estimator produced a reduced bias which in turn result to a lower mean squared error than the Beta ridge 

estimator. The estimator performance is also a function of the Biasing parameter. It is also evident that 

jackknifing the ridge estimator reduced the mean squared error of the Beat ridge estimator. 

 

7. CONCLUSIONS  

Multicollinearity is a threat to parameter estimation and inferences in the linear regression model and the 

generalized regression model such as the Beta regression model (BRM). The regression parameters are 

popularly estimated using the method of maximum likelihood. However, the performance of the maximum 

likelihood suffers setbacks when there is multicollinearity. The Beta ridge estimator produces a more reliable 
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estimate with minimum mean squared error than the earlier mentioned estimator. The limitation of the Beta 

ridge estimator is high bias. An effective means of reducing the bias is to employ the Jackknife procedure. In 

this study, we proposed the Jackknife Beta ridge and Modified Jackknife Beta ridge estimators. We 

compared the estimators’ performance in the following ways: theoretically, simulation study and real-life 

application. In conclusion, the new methods generally produced a more efficient estimates when there is 

multicollinearity in the BRM. 

 

 

 

REFERENCES 
[1] Abonazel, M. R. (2019). New ridge estimators of SUR model when the errors are serially correlated. International Journal of 

Mathematical Archive, 10(7), 53-62. 

[2] Abonazel, M. R., & Farghali, R. A. (2019). Liu-type multinomial logistic estimator. Sankhya B, 81(2), 203-225. 

[3] Abonazel, M. R., & Taha, I. (2021). Beta Ridge Regression Estimators: Simulation and Application. Communications in 

Statistics-Simulation and Computation. 1-20. https://doi.org/10.1080/03610918.2021.1960373  

[4] Algamal, Z. Y. (2018). Developing a ridge estimator for the gamma regression model. Journal of Chemometrics, 32(10), 

e305 

[5] Atkinson, A.C. (1985). Plots, Transformations and Regression: An Introduction to Graphical Methods of Diagnostic 

Regression Analysis. New York: Oxford University Press. 

[6] Batah, F. S. M., Ramanathan, T. V., & Gore, S. D. (2008). The efficiency of modified jackknife and ridge type regression 

estimators: a comparison. Surveys in Mathematics and its Applications, 3, 111-122. 

[7] Duran, E. A., & Akdeniz, F. (2012). Efficiency of the modified jackknifed Liu-type estimator. Statistical Papers, 53(2), 265-

280. 

[8] Espinheira, P. L., da Silva, L. C. M., & Silva, A. D. O. (2015). Prediction measures in beta regression models. arXiv preprint 

arXiv:1501.04830. 

[9] Espinheira, P. L., da Silva, L. C. M., Silva, A. D. O., & Ospina, R. (2019). Model selection criteria on beta regression for 

machine learning. Machine Learning and Knowledge Extraction, 1(1), 427-449. 

[10] Espinheira, P. L., Ferrari, S. L., & Cribari-Neto, F. (2008). On beta regression residuals. Journal of Applied Statistics, 35(4), 

407-419. 

[11] Farebrother, R. W. (1976). Further results on the mean square error of ridge regression. Journal of the Royal Statistical 

Society. Series B (Methodological), 248-250. 

[12] Farghali, R. A., Qasim, M., Kibria, B. G., & Abonazel, M. R. (2021). Generalized two-parameter estimators in the 

multinomial logit regression model: methods, simulation and application. Communications in Statistics-Simulation and 

Computation, 1-16. https://doi.org/10.1080/03610918.2021.1934023  

[13] Ferrari, S., & Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. Journal of applied statistics, 31(7), 

799-815. 

[14] Frisch, R. (1934). Statistical confluence analysis by means of complete regression systems. University Institute of 

Economics. Cambridge University Press. 

[15] Gruber, M. H. (1991). The efficiency of jack-knifed and usual ridge type estimators: A comparison. Statistics & probability 

letters, 11(1), 49-51. 

[16] Hinkley, D. V. (1977). Jackknifing in unbalanced situations. Technometrics, 19(3), 285-292. 

[17] Hoerl, A. E., & Kennard, R. W. (1970a). Ridge regression: Biased estimation for non-orthogonal problems. Technometrics, 

12(1), 55-67. 

[18] Hoerl, A. E., & Kennard, R. W. (1970b). Ridge regression: applications to non-orthogonal problems. Technometrics, 12(1), 

69-82. 

[19] Khurana, M., Chaubey, Y. P., & Chandra, S. (2014). Jackknifing the ridge regression estimator: A revisit. Communications 

in Statistics-Theory and Methods, 43(24), 5249-5262. 

[20] Kibria, B. M. G., & Lukman, A. F. (2020). A new ridge-type estimator for the linear regression model: Simulations and 

applications. Scientifica. https://doi.org/10.1155/2020/9758378 

[21] Karlson, P., Mansson, K., & Kibria, B. M. G. (2020). A Liu estimator for the beta regression model and its application to 

chemical data. Journal of Chemometrics, 34: e3300. https://doi.org/10.1002/cem.3300 

[22] Lukman, A. F., & Ayinde, K. (2017). Review and Classifications of the ridge parameter estimation techniques. Hacettepe 

Journal of Mathematics and Statistics, 46(5), 953-967. 

[23] Lukman, A. F., Aladeitan, B., Ayinde, K., & Abonazel, M. R. (2021). Modified ridge-type for the Poisson regression model: 

simulation and application. Journal of Applied Statistics, 1-13. 

[24] Nyquist, H. (1988). Applications of the jackknife procedure in ridge regression. Computational Statistics & Data Analysis, 

6(2), 177-183. 

[25] Ospina R., Cribari-Neto, F., & Vasconcellos, K. (2006). Improved point and interval estimation for a beta regression model. 

Comput Stat Data An., 51(2):960-981. 

[26] Prater, N. H. (1956). Estimate gasoline yields from crude. PetroLium Refiner. 35:236-238. 

[27] Qasim, M., Månsson, K., & Golam Kibria, B. M. (2021). On some beta ridge regression estimators: method, simulation and 

application. Journal of Statistical Computation and Simulation, 1-14. 

[28] R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 

Vienna, Austria. https ://www.R-proje ct.org. 



               ISSN: xxxx-xxxx 

International Journal of Mathematics, Statistics, and Computer Science 

24 

[29] Rady, E. A., Abonazel, M. R., & Taha, I., M. (2019). A new biased estimator for zero-inflated count regression models. 

Journal of Modern Applied Statistical Methods, Accepted paper (July 2019). 

[30] Sherman, J., & Morrison, W. J. (1950). Adjustment of an inverse matrix corresponding to a change in one element of a given 

matrix. The Annals of Mathematical Statistics, 21(1), 124-127. 

[31] Singh, B., Chaubey, Y. P., & Dwivedi, T. D. (1986). An almost unbiased ridge estimator. Sankhyā: The Indian Journal of 

Statistics, Series B, 342-346. 

[32] Türkan, S., & Özel, G. (2016). A new modified Jackknifed estimator for the Poisson regression model. Journal of Applied 

Statistics, 43(10), 1892-1905. 

[33] Türkan, S., & Özel, G. (2018). A Jackknifed estimators for the negative binomial regression model. Communications in 

Statistics-Simulation and Computation, 47(6), 1845-1865. 

[34] Yasin, A. S. A. R., Karaibrahimoğlu, A., & Aşır, G. E. N. Ç. (2013). Modified ridge regression parameters: A comparative 

Monte Carlo study. Hacettepe Journal of Mathematics and Statistics, 43(5), 827-841. 

[35] Yıldız, N. (2018). On the performance of the Jackknifed Liu-type estimator in linear regression model. Communications in 

Statistics-Theory and Methods, 47(9), 2278-2290. 

 


