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ABSTRACT
The distributions of products and ratios of random variables are of interest in many areas of the sci-

ences. In this paper, we find analytically the probability distributions of the product XY and the ratio X/Y ,
when X and Y are two independent random variables following Pareto and Erlang distributions, respectively.
Keywords: Product Distribution, Ratio Distribution, Pareto Distribution, Erlang Distribution, Exponential Dis-
tribution, probability density function, Moment of order r, Survival function, Hazard function.

1. INTRODUCTION
Engineering, Physics, Economics, Order statistics, Classification, Ranking, Selection, Number theory,

Genetics, Biology, Medicine, Hydrology, Psychology, these all applied problems depend on the distribution of
product and ratio of random variables [1],[2].
As an example of the use of the product of random variables in physics, Sornette [27] mentions: To mimic
system size limitation, Takayasu, Sato, and Takayasu introduced a threshold xc . . . and found a stretched expo-
nential truncating the power-law pdf beyond xc. Frisch and Sornette recently developed a theory of extreme
deviations generalizing the central limit theorem which, when applied to the multiplication of random vari-
ables, predicts the generic presence of stretched exponential pdfs. The problem thus boils down to determining
the tail of the pdf for a product of random variables. Several authors have studied the product distributions for
independent random variables that come from the same family or different families, see [21] for t and Rayleigh
families, [4] for Pareto and Kumaraswamy families, [6] for the t and Bessel families, and [22] for the inde-
pendent generalized Gamma-ratio family, [28] for Pareto and Rayleigh families. As an example of the use of
the ratio of random variables include Mendelian inheritance ratios in genetics, mass to energy ratios in nuclear
physics, target to control precipitation in meteorology, and inventory ratios in economics. Several authors have
studied the ratio distributions for independent random variables come from the same family or different fami-
lies. the historical review, see [9], [10] for the Normal family, [11] for Student’s t family, [12] for the Weibull
family, [13] for the noncentral Chi-squared family, [14] for the Gamma family, [15] for the Beta family, [16] for
the Logistic family, [17] for the Frechet family, [3] for the inverted Gamma family, [18] for Laplace family, [7]
for the generalized-F family, [19] for the Hypoexponential family, [2] for the Gamma and Rayleigh families,
and [20] for Gamma and Exponential families, [28] for Pareto and Rayleigh families.
In this paper, we find analytically the probability distributions of the product XY and the ratio X/Y , when
X and Y are two independent random variables following Pareto and Erlang distributions respectively. with
probability density functions (p.d.f.s)

fX(x) =
cac

xc+1
(1)

fY (y) =
yα−1e−

y
λ

λαΓ(α)
(2)

respectively, for a ≤ x < ∞ , a > 0, c > 0, y ≥ 0, λ > 0, α > 0, α is an integer for the Erlang distribution.

NOTATIONS AND PRELIMINARIES
Recall some special mathematical functions, these will be used repeatedly throughout this article.
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• The upper incomplete gamma function defined by

Γ(a, x) =

∫ ∞

x

exp(−t)ta−1dt (3)

• The lower incomplete gamma function defined by

γ(a, x) =

∫ x

0

exp(−t)ta−1dt (4)

The calculations of this paper involve several Lemmas

Lemma 1 For α ≥ 0, r ∈ R, and b ∈ R∗
+

I(α, r, b) =

∫ ∞

α

xre−bxdx =
1

br+1
Γ(r + 1, bα) (5)

Proof Let u = bx, then

I(α, r, b) =

∫ +∞

bα

ur

br+1
e−udu =

1

br+1
Γ(r + 1, bα) (6)

Lemma 2 For t ∈ R ,
d

dx
Γ(t, v(x)) = −v(x)t−1e−v(x) d

dx
v(x) (7)

Proof
d

dx
Γ(t, v) =

d

dv
Γ(t, v)

dv

dx
(8)

Note that

d

dv
Γ(t, v) = −vt−1e−v (9)

Lemma 3 For α ≥ 0, r ∈ R, and b ∈ R∗
+∫ α

0

xre−bxdx =
1

br+1
γ(r + 1, bα) (10)

Proof For u = bx ∫ bα

0

ur

br+1
e−udu =

1

br+1
γ(r + 1, bα) (11)
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2. DISTRIBUTION OF THE RATIO X/Y
Theorem 2.1. Suppose X and Y are independent and distributed according to (1) and (2), respec-

tively. Then for z > 0 the cumulative distribution function c.d.f. of Z = X/Y can be expressed as:

FZ(z) =

{
0 if z ≤ 0
Γ(α, a

λz )

Γ(α) − ac

Γ(α)zcλcΓ(α− c, a
λz ) if z > 0

(12)

Proof. the c.d.f. corresponding to (1) is FX(x) = 1− (ax )
c Thus, one can write the c.d.f. of X/Y as

Pr(X/Y ≤ z) =

∫ ∞

a/z

FX(zy)fY (y)dy

=

∫ ∞

a/z

(1− ac

zcyc
)fY (y)dy

=

∫ ∞

a/z

fY (y)dy −
ac

zc

∫ ∞

a/z

yα−1e−
y
λ

ycλαΓ(α)
dy

(13)

Let

I =

∫ ∞

a/z

fY (y)dy =

∫ ∞

0

fY (y)dy −
∫ a/z

0

fY (y)dy = 1−
∫ a/z

0

fY (y)dy (14)

If we substitute u = y
λ in the integral above we obtain

I =
Γ(α, a

zλ )

Γ(α)
(15)

And let

J =

∫ ∞

a/z

acyα−1e−
y
λ

zcycλαΓ(α)
dy (16)

If we substitute u = y
λ , we obtain

J =
ac

Γ(α)zcλα
λα−cΓ(α− c,

a

λz
) (17)

Finally we get

FZ(z) =
Γ(α, a

λz )

Γ(α)
− ac

Γ(α)zcλc
Γ(α− c,

a

λz
) (18)

Corollary 2.2. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for
z > 0 the probability density function p.d.f. of Z = X/Y can be expressed as:

fZ(z) =

{
0 if z ≤ 0
cacΓ(α−c, a

λz )

Γ(α)λczc+1 if z > 0
(19)

Proof. The probability density function fZ(z) in (19) easily follows by differentiation and by using Lemma
2.

Corollary 2.3. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for
c > r. the moment of order r of Z = X/Y can be expressed as:

E[Zr] =
cacβr−cΓ(α− c, a

λβ )

Γ(α)λc(c− r)
+

car
[
Γ(c− r)− Γ(c− r, a

βλ )
]

Γ(α)λr(c− r)
(20)
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Proof.

E[Zr] =

∫ +∞

−∞
zrfZ(z)dz

=

∫ ∞

β

zr
cacΓ(α− c, a

λz )

Γ(α)λczc+1
dz

(21)

Integration by parts implies:

E[Zr] =
cac

Γ(α)λc

[
Γ(α− c,

a

λβ
)
βr−c

(c− r)
−
∫ ∞

β

e−a/λzaα−czr−c

λα−czα−c+1(r − c)
dz

]
(22)

If we substitute u = a
λz and using Lemma 3 in the integral above we obtain

E[Zr] =
cacβr−cΓ(α− c, a

λβ )

Γ(α)λc(c− r)
+

car
[
Γ(c− r)− Γ(c− r, a

βλ )
]

Γ(α)λr(c− r)
(23)

Corollary 2.4. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for
c > 1. the Expected value of Z = X/Y can be expressed as:

for r = 1

E[Z] =
cacβ1−cΓ(α− c, a

λβ )

Γ(α)λc(c− 1)
+

ca
[
Γ(c− 1)− Γ(c− 1, a

βλ )
]

Γ(α)λ(c− r)
(24)

Corollary 2.5. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for
c > 2 the Variance of Z = X/Y can be expressed as:

σ2 =

[
cacβ2−cΓ(α− c, a

λβ )

Γ(α)λc(c− 2)
+

ca2
[
Γ(c− 2)− Γ(c− 2, a

βλ )
]

Γ(α)λ2(c− 2)

]

−

[
cacβ1−cΓ(α− 1, a

λβ )

Γ(α)λc(c− 1)
+

ca
[
Γ(c− 1)− Γ(c− 1, a

βλ )
]

Γ(α)λ(c− 1)

]2
(25)

Proof. By definition the variance of X/Y is:

σ2 = E[Z2]− E[Z]2 (26)

Corollary 2.6. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for
z > 0 the Survival function of Z = X/Y can be expressed as:

SZ(z) =

{
1 if z ≤ 0

1− Γ(α, a
λz )

Γ(α) + ac

Γ(α)zcλcΓ(α− c, a
λz ) if z > 0

(27)

Proof By definition of the survival function

SZ(z) = 1− FZ(z). (28)
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Corollary 2.7. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for
z > 0 the Hazard function of Z = X/Y can be expressed as

hZ(z) =

{
0 if z ≤ 0

cacΓ(α−c, a
λz )

Γ(α)zc+1λc−zc+1λcΓ(α, a
λz )+aczΓ(α−c, a

λz )
if z > 0

(29)

Proof By definition of the hazard function

hZ(z) =
fZ(z)

SZ(z)
. (30)
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Figure 1. Plots of the pdf (19) for a = 1, c = 1, λ = 1, 2, 3, α = 2
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Figure 2. Monte carlo simulation for the ratio of pareto and erlang, for a = 1, c = 1, λ = 1, α = 2

2.1. Distribution of the ratio of Pareto and Exponential random variables
The Erlang distribution is the distribution of a sum of α independent Exponential variables with mean

1
b = λ each. When α = 1 the Erlang distribution Y simplifies to the Exponential distribution witch lead us to
the following corollary.

Corollary 2.8. Suppose X and Y are two independent Pareto (1) and Erlang (2) random variables, then for
z > 0, α = 1. The probability density function p.d.f. of the ratio of Pareto and Exponential random variables
Z = X/Y can be expressed as:

fZ(z) =

{
0 if z ≤ 0
c(ab)cΓ(1−c, ab

z )

zc+1 if z > 0
(31)

3. DISTRIBUTION OF THE PRODUCT XY

Theorem 3.1. Suppose X and Y are independent and distributed according to (1) and (2), respec-
tively. Then for z > 0 The cumulative distribution function c.d.f. of Z = XY can be expressed as:

FZ(z) =

{
0 if z ≤ 0

1− Γ(α,z/aλ)
Γ(α) − acλcΓ(α+c)

zcΓ(α) + acλcΓ(α+c,z/aλ)
zcΓ(α) if z > 0

(32)
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Proof. the c.d.f. corresponding to (1) is FX(x) = 1− (ax )
c Thus, one can write the c.d.f. of XY as

FZ(z) = Pr(Z ≤ z) = Pr(XY ≤ z) =

∫ ∞

0

FX(z/y)fY (y)dy

=

∫ z/a

0

(1− acyc

zc
)fY dy

=

∫ z/a

0

fY (y)dy −
∫ z/a

0

acyc

zc
fY (y)dy

(33)

Let

I =

∫ z/a

0

fY (y)dy

=

∫ ∞

0

fY (y)dy −
∫ ∞

z/a

fY (y)dy

= 1−
∫ ∞

z/a

fY (y)dy

(34)

Using Lemma 1 in the integral above we get

I = 1− Γ(α, z/aλ)

Γ(α)
(35)

Now Let

J =

∫ z/a

0

acyc

zc
fY (y)dy

=
ac

zcλαΓ(α)

∫ z/a

0

yα+c−1e−y/λdy

(36)

Using Lemma 3 in the integral above we get

J =
acλc

zcΓ(α)

[
Γ(α+ c)− Γ(α+ c, z/aλ)

]
Finally

FZ(z) = I − J = 1− Γ(α, z/aλ)

Γ(α)
− acλcΓ(α+ c)

zcΓ(α)
+

acλcΓ(α+ c, z/aλ)

zcΓ(α)
(37)

For z > 0

Corollary 3.2. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for
z > 0 the probability density function p.d.f. of Z = XY can be expressed as:

fZ(z) =


0 if z ≤ 0

cacλc

[
Γ(α+c)−Γ(α+c,z/aλ)

]
zc+1Γ(α) if z > 0

(38)

Proof. The probability density function fZ(z) in (38) easily follows by differentiation using

1. d
dz (Γ(α, z/aλ)) = − zα−1

(aλ)α e
−z/aλ

2. d
dz (

Γ(α+c,z/aλ)
zc ) = − zα−1e−z/aλ

(aλ)α+c − cΓ(α+c,z/aλ)
zc+1
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Corollary 3.3. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for
c > r, β > 0 the moment of order r of Z = XY can be expressed as:

E[Zr] =
cacλcΓ(α+ c)βr−c

Γ(α)(c− r)
− βr−cΓ(α+ c, β/aλ)

(c− r)
+

Γ(r + α, β/aλ)

(c− r)(aλ)c−r
(39)

Proof.

E[Zr] =

∫ +∞

−∞
zrfZ(z)dz

=

∫ +∞

β

cacλcΓ(α+ c)

Γ(α)zc+1−r
dz

−
∫ +∞

β

cacλcΓ(α+ c, z/aλ)

Γ(α)zc+1−r
dz

(40)

Let

I =

∫ +∞

β

cacλcΓ(α+ c)

Γ(α)zc+1−r
dz =

cacλcΓ(α+ c)βr−c

Γ(α)(c− r)
(41)

And let

J =

∫ +∞

β

cacλcΓ(α+ c, z/aλ)

Γ(α)zc+1−r
dz (42)

integration by part implies:

J =
βr−cΓ(α+ c, β/aλ)

(c− r)
+

∫ ∞

β

zr+α−1e−z/aλ

(r − c)(aλ)α+c
dz (43)

Using Lemma 1 we get

J =
βr−cΓ(α+ c, β/aλ)

(c− r)
− Γ(r + α, β/aλ)

(c− r)(aλ)c−r
(44)

Finally we obtain

E[Zr] =
cacλcΓ(α+ c)βr−c

Γ(α)(c− r)
− βr−cΓ(α+ c, β/aλ)

(c− r)
+

Γ(r + α, β/aλ)

(c− r)(aλ)c−r
(45)

Corollary 3.4. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for
c > 1, β > 0. the Expected value of Z = XY is obtained for r = 1 and it can be expressed as:

E[Z] =
cacλcΓ(α+ c)β1−c

Γ(α)(c− 1)
− β1−cΓ(α+ c, β/aλ)

(c− 1)
+

Γ(1 + α, β/aλ)

(c− 1)(aλ)c−1
. (46)

Corollary 3.5. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for
c > 2, β > 0. the variance of Z = XY can be expressed as:

σ2 =
cacλcΓ(α+ c)β2−c

Γ(α)(c− 2)
− β2−cΓ(α+ c, β/aλ)

(c− 2)
+

Γ(2 + α, β/aλ)

(c− 2)(aλ)c−2

−

[
cacλcΓ(α+ c)β1−c

Γ(α)(c− 1)
− β1−cΓ(α+ c, β/aλ)

(c− 1)
+

Γ(1 + α, β/aλ)

(c− 1)(aλ)c−1

]2

.

(47)
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Proof.
By definition, the variance of XY is:

σ2 = E[Z2]− E[Z]2. (48)

Corollary 3.6. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for
z > 0. the Survival function of Z = XY can be expressed as:

SZ(z) =

{
1 if z ≤ 0
Γ(α,z/aλ)

Γ(α) + acλcΓ(α+c)
zcΓ(α) − acλcΓ(α+c,z/aλ)

zcΓ(α) if z > 0
(49)

Proof By definition of the survival function

SZ(z) = 1− FZ(z). (50)

Corollary 3.7. Let X and Y are independent and distributed according to (1) and (2), respectively. Then for
the Hazard function of Z = XY can be expressed as:

hZ(z) =


0 if z ≤ 0

cacλc

[
Γ(α+c)−Γ(α+c,z/aλ)

]
zc+1Γ(α,z/aλ)+zacλcΓ(α+c)−zacλcΓ(α+c,z/aλ) if z > 0

(51)

Proof By definition of the hazard function

hZ(z) =
fZ(z)

SZ(z)
. (52)

for z > 0.
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Figure 3. Plots of the pdf (38) for a = 1, c = 2, λ = 1, α = 2, 3, 4.
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Figure 4. Monte carlo simulation for the product of pareto and erlang for a = 1, c = 2, λ = 1, α = 2.

3.1. Distribution of the product of Pareto and Exponential random variables
The Erlang distribution is the distribution of a sum of α independent Exponential variables with mean

1
b = λ each. When α = 1, the Erlang distribution Y simplifies to the Exponential distribution witch lead us to
the following corollary.

Corollary 3.8. Suppose X and Y are two independent Pareto (1) and Erlang (2) random variables, then
for z > 0, α = 1. The probability density function p.d.f. of the product of Pareto and Exponential random
variables Z = XY can be expressed as:

fZ(z) =


0 if z ≤ 0

cac

[
Γ(c+1)−Γ(c+1,bz/a)

]
λczc+1 if z > 0

(53)
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4. APPLICATIONS
4.1. Electric circuit

In a number of applications it is necessary to know the properties of the product of random variables:
this occurs in particular when the random variables involved have dimensions of a ratio like fuel consumption
per mile, cost of a structure per 1 lb. of payload, amplification ratio, tolerances expressed in percentages of
the desired value, etc. Thus, for instance, if the number of accidents in a period can be regarded as a random
variable and if the same applies to the number of days spent in hospital by an accident victim and to the total
cost per one day-patient then the total cost is a product of these three random variables. Another application
occurs, for instance, in the case when amplifiers are connected in series. If x, is the random variable describing
the amplification of the ith amplifier then the total amplification x = x1x2...xn is also a random variable and it
is important to know the distribution of this product.
Example, suppose an electric circuit with two amplifiers in series, X1 is a random variable follows Pareto
distribution with parameter a = 1, c = 3, and X2 is a random variable follows Erlang distribution with
parameter λ = 1,, α = 2. then the total amplification gain is Z = X1.X2 and by using our result their pdf is

fZ(z) =

{
0 if z ≤ 0
3(Γ(5)−Γ(5,z))

Γ(2)z4 if z > 0
(54)

Figure 5. An electric circuit with two amplifiers in series

4.2. Portfolio of risks
In a portfolio of risks, let X denote a random variable which gives the probability that the event that

claim has occurred and let Y denote the claim amount. Then the individual risk will be the product of the two
random variables Z = XY . Assume that X follows Pareto distribution with parameters a = 1, c = 3 [? ], and
Y is a random variable follows Erlang distribution with parameters λ = 1, α = 2 [? ]. Using our result, the
individual risk Z = XY can be expressed as:

fZ(z) =

{
0 if z ≤ 0
3(Γ(5)−Γ(5,z))

Γ(2)z4 if z > 0
(55)
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Figure 6. Monte Carlo simulation of the product XY (55), for a = 1, c = 3, λ = 1, α = 2.

The Monte Carlo simulation code:

4.3. Measurement or Radiation by Electronic Counters
Proportional, Geiger, and scintillation counters are often used to ’ detect X and γ radiation, as well

as other charged particles such as electrons and α particles. Design of these counters and their associated
circuits depends to some extent on what is to be detected. A device common to all counters is a scaler. This
electronic device counts pulses produced by the counter. Once the number of pulses over a measured period
of time is known, the average counting rate is obtained by simple division. If the rate of pulses is too high
for a mechanical device, it is necessary to scale down the pulses by a known factor before feeding them to a
mechanical counter. There are two kinds of scalers: the binary scaler in which the scaler factor is some power
of 2, and the decade scaler in which the scaling factor is some power of 10.

A typical binary scaler has several scaling factors ranging from 20 to 214. The scaling circuit is made
up of a number of identical ”stages” connected in series, the number of stages being equal to n, where 2n

is the desired scaling factor, Each stage is composed of a number of vacuum tubes, capacitors, and resistors,
connected so that only one pulse of current is transmitted for every two pulses received, Since the output of one
stage is connected to the input of another, this division by two is repeated as many times as there are stages.
The output of the last stage is connected to a mechanical counter that will register one count for every pulse
transmitted to it by the last stage. Thus, if N pulses from a counter are passed through a circuit of n stages,
only N

2n will register on the mechanical counter. Because arrival of X-ray quanta in the counter is random in
time, the accuracy of a counting rate measurement is governed by the laws of probability. Two counts of the
same X-ray beam for identical periods of time will not be precisely the same because of the random spacing
between pulses, even though the counter and scaler are functioning perfectly. Clearly, the accuracy of a rate
measurement of this kind improves as the time of counting is prolonged. It is therefore; important to know how
long to count in order to attain a specified degree of accuracy. This problem is complicated when additional
background causes contamination in the counting process. This unavoidable background is due to cosmic rays
and may be augmented, particularly in some laboratories, by nearby radioactive materials. Suppose we want
to estimate the diffraction background in the presence of a fairly large unavoidable background. Let N be the
number of pulses ! counted in a given time from a radiation source; Let Nb be the number counted in the same
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time with radiation source removed. The Nb counts are due to unavoidable background and (N − Nb) to the
diffract able background being measured. The relative probable error in (N −Nb) is

EN−Nb
=

67
√
N +Nb

N −Nb

percent.
since N and Nb are random variables, the desirability of obtaining the density function of the above

quotient from of random variable is apparent.
For instance, if

√
N +Nb is a random variable follows Pareto distribution with parameter c = 2 and a = 1,

and N −Nb is a random variable follows Erlang distribution with parameter λ = 1, α = 3, then by using our
result The relative probable error in (N −Nb) is

EN−Nb
=

0 if z ≤ 0

134
[
Γ(1,1/z)

]
Γ(3)z3 if z > 0

(56)

5. CONCLUSION
This paper has derived The analytical expressions of the PDF, CDF, the rth moment function, the

variance, the survival function, and the hazard function, for the distributions of XY and X/Y when X and
Y are Pareto and Erlang random variables distributed independently of each other, we illustrate our results in
some graphics of the pdf for the distributions of product and ratio, finally we have discussed some examples of
real-life applications for the distribution of the product and ratio, and we assured our results using Monte Carlo
simulation.
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[17] S. Nadarajah and S. Kotz, On the ratio of fréchet random variables, Quality and Quantity, 40 (2006),
861–868.

[18] S. Nadarajah, The linear combination, product and ratio of Laplace random variables, Statistics, 41
(2007), 535–545.

[19] K. Therrar and S. Khaled, The exact distribution of the ratio of two independent hypoexponential random
variables, British Journal of Mathematics and Computer Science, 4 (2014), 2665–2675.

[20] L. Joshi and K. Modi, On the distribution of ratio of gamma and three parameter exponentiated exponen-
tial random variables, Indian Journal of Statistics and Application, 3 (2014), 772–783.

IJMSCS, Vol. 1, No. , 2023: 1-1x



IJMSCS ISSN: 2704-1077

[21] K. Modi and L. Joshi, On the distribution of product and ratio of t and Rayleigh random variables, Journal
of the Calcutta Mathematical Society, 8 (2012), 53–60.

[22] C. A. Coelho and J. T. Mexia, On the distribution of the product and ratio of independent generalized
gamma-ratio, Sankhya: The Indian Journal of Statistics, 69 (2007), 221–255.

[23] A. Asgharzadeh, S. Nadarajah, and F. Sharafi, Weibull lindley distributions, Statistical Journal, 16 (2018),
87–113.

[24] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and Series, Gordon and Breach Science
Publishers, Amsterdam, Netherlands, 2 (1986).

[25] F. Brian and K. Adem, Some results on the gamma function for negative integers, Applied Mathematics
and Information Sciences, 6 (2012), 173–176.

[26] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, Cambridge,
MA, USA, 6 (2000).

[27] D. Sornette Multiplicative processes and power law, Physical Review E, 57 (1998), 4811-4813.

[28] N. Obeid, S. Kadry, On the product and quotient of pareto and rayleigh random variables, PJS Headquar-
ters Lahore, (2019).

[29] Folpmers, M., Default modeling of funds using the Generalized Pareto distribution. J Deriv Hedge Funds
16 (2010), 116–122.

[30] Emilio, G. D., Enrique, C, O. The Compound DGL/Erlang Distribution in the Collective Risk Model,
REVISTA DE METODOS CUANTITATIVOS PARA ´LA ECONOM´IA Y LA EMPRESA, 16 (2013),
121–142.

47 


	Introduction
	Distribution of the ratio X /Y
	 Distribution of the ratio of Pareto and Exponential random variables

	Distribution of the product X Y
	Distribution of the product of Pareto and Exponential random variables

	Applications
	Electric circuit
	Portfolio of risks
	 Measurement or Radiation by Electronic Counters

	Conclusion



