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ABSTRACT This analysis aims to provide an overview of potential machine learning algorithms that may aid 

the aviation industry in predicting future air passenger traffic flow, which can help increase stakeholder value 

as well as improve customer experiences. A review and discussion of the aviation industry’s past, current, and 

future challenges is provided, as well as an overview of machine learning algorithms, neural networks, and 

learning methods. Further, an overview and discussion of the architecture of the Long Short-Term Memory 

(LSTM) network, Support Vector Regression Machine (SVRM), and Random Forest (RF) algorithms is 

provided. The comparative analysis provides an overview and comparison of the performance of the LSTM, 

SVRM, and RF models based on Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). The 

dataset used includes the hourly number of passengers from scheduled flights at Oslo Airport Gardermoen for 

the period of January 1, 2009, to December 31, 2019, including the datetime features such as Time (hour), day, 

month, and year, as well as the weather features of air temperature and mean wind speed, with a total of 96185 

samples. The Long Short-Term Memory model exhibited the highest generalization ability, with a performance 

evaluation on the testing dataset of 0.00445/0.06667 MSE/RMSE. Additionally, the performance of the SVRM 

and RF models on the testing dataset is 0.00511/0.07147 and 0.00543/0.07368 MSE/RMSE respectively. In 

addition to the performance, each of the models’ complexity, stability, and ability to predict the hourly and 

daily fluctuations of passengers are discussed. 

Keywords: Machine Learning, LSTM, SVRM, RF, Aviation. 

 

1. INTRODUCTION 

The training and application of supervised Machine Learning (ML) algorithms, for the purpose of predicting 

future air passenger traffic in Norway, can greatly benefit the aviation industry to make better decisions based 

on empirical data. The aviation industry has experienced significant growth in the amount of air traffic during 

the past two decades, with two of the main reasons for said growth being a country’s increase in Gross Domestic 

Product (GDP) and population growth [1], [2]. Numerous examples where the growth of the aviation industry 

can be observed include a steady increase in air passenger traffic, the expansion or building of new airports, as 

well as airlines expanding their fleet of aircraft by purchasing additional ones. This unparalleled historical 

growth has in recent years been challenged and is presented with numerous challenges that it must solve to 

continue growing in the future. 

Events such as the COVID-19 pandemic sent the industry to a standstill following a significant reduction in 

demand during the height of the pandemic [3]. One of the main drivers behind the reduction in demand came 

because of the implementation of air travel restrictions by the Norwegian and other governments.  

Although a steady increase in population worldwide and in Norway has historically been observed [4], which 

has benefitted the growth of the aviation industry, an emerging long-term challenge to the industry is the 

stagnation of birth rates in Norway [5] and abroad [6]. To meet these short and long-term challenges, as well 

as improve customer experiences, the aviation industry’s ability to predict future air passenger traffic flow 

needs to be enhanced. 

There is a need to enhance the prediction of future air passenger traffic flow within the aviation industry in  

order to increase stakeholder value, as well as to improve customer experiences. Incorrect or insufficient 

forecasting of air traffic can lead to significant losses for the aviation industry, which can be observed if an 
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airliner purchases a large amount of aircraft to meet a demand which may later change, which may result in a 

portion of the fleet not being used, not generating revenue. Other large investments such as building long-term 

aviation infrastructure such as airports would also greatly benefit from air traffic forecasting. The accurate 

forecasting of air traffic demand, both short-term and long-term, would greatly benefit the industry. 

The aim of this research effort is to assist in that by providing a comparative analysis of a Long Short-Term 

Memory (LSTM), Support Vector Regression Machine (SVRM), and Random Forest model (RF) model. The 

models will be trained and evaluated on a dataset including the Passenger amounts at the Oslo Airport Terminal 

Gardemoen, for each hour of the day, ranging from Jan 1, 2009, to Dec 31, 2019. In addition to the datetime 

features of hour, day, month, and year, the dataset also includes the mean wind speed and air temperature for 

each respective hour. The passenger data was collected with the help of [7], and the weather data was collected 

from [8], and the yearly CSVs of both were cleaned and merged at each corresponding hour. The comparative 

analysis will compare the performance of the models based on Mean Squared Error (MSE) and Root Mean 

Squared Error (RMSE).  

To serve this objective, this paper is structured as the following. The literature review section provides an 

overview of the aviation industry, its historic growth, current and future challenges, as well as an overview of 

the LSTM, SVRM, and RF algorithms. Furthermore, it also discusses previous implementations of ML and 

NNs within the aviation industry and for forecasting. After that, the Methodology section provides an overview 

of the data collection and processing, network, and algorithm modeling, and hyperparameter tuning for each 

specific model. Then, the data collection & processing section goes into detail about how the data was collected 

and processed for the creation of the dataset. The Comparative Analysis section discusses the difference in 

performance between the three models that were trained and evaluated, focusing on model performance, 

stability, and complexity differences, as well as comparing predicted vs. actual testing values. Finally, we 

demonstrate the Conclusion and the future work which summarize the research contribution and discuss some 

of the different avenues possible for future work. 

2. LITERATURE REVIEW 

The literature review aims to provide an overview of the historical growth and future challenges within the 

aviation industry, as well as discuss the architectures of the LSTM, SVRM, and RF algorithms. Furthermore, 

it will cover existing research within the field of forecasting, as well as previous research that has used ML and 

NNs within the aviation industry and for the purpose of forecasting.  

2.1. Historical Growth and Future Challenges Within the Aviation Industry 

Historically the aviation industry has had unprecedented growth (Figure 1), which can be attributed to various 

factors including Gross Domestic Product (GDP) growth and world population increase. As observed by the 

World Bank [9], which shows a steady growth within the industry, a significant increase is observed between 

the years 2009 and 2019. In 2009, there were 2.25 billion passengers carried, and in 2019 peaks at 4.56 billion, 

which is a 102.6% increase over a relatively short period of 10 years. The remarkable growth within the 

industry, for the pre-COVID 19 years is also reviewed in the International Air Transport Association’s (ICAO) 

annual 2019 report [10], which observes an average of 4.9% increase in scheduled passenger traffic measured 

in revenue passenger-kilometres (RPK), in the year 2019. 
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Figure 1. Global airline Revenue Passenger-Kilometers (RPKs) from 1945-2021, billion. Source: [11] 

To a certain extent, it is possible to correlate the historical growth of the aviation industry to varying factors 

such as GDP increase, social factors such as increased tourism, as well as economic evolution in developing 

regions, which all serve as an indication for market demand increase [11]. Airport infrastructure, such as the 

number of runways available at an airport and the size of waiting rooms, to name a few, is greatly influenced 

by the demand for air traffic [12]. While impressive growth has been observed for decades, the number of 

passengers carried for the year 2020 dropped to 1.81 billion. This drop in passengers carried is a consequence 

of the air travel restrictions implemented by various governments because of the COVID-19 pandemic (Figure 

2).  

 

Figure 2. Air passenger traffic & COVID-19 cases for March of 2020 in Europe. Source: ACI Europe [14] 

The major reduction in airport traffic correlates to major revenue loss for airlines and airports alike, with the 

extent of the loss being dependent on, among others, the effectiveness of economic stimulus [13]. More recent 

prognosis shows that although the industry was ill-equipped to deal with the major consequences of COVID-

19, the industry has been resilient in its recovery. This resilience is outlined by the Airbus Global Market 

Forecast of 2022 by [14], which shows that the aviation market is expected to recover to 2019 levels already 

between 2023 and 2025. A thorough investigation into Artificial Intelligence’s ability to assist the aviation 

industry, specifically in times of crisis such as COVID-19 has been done by [15]. The researchers discuss the 

opportunity for the industry to leverage AI tools to enhance its business model. 

Economic and social factors such as gross domestic product (GDP) and population growth are, among others, 

contributing factors to the historical growth of air traffic [2], [16]. The impact of these factors will vary from 

region to region. Regions that have a larger GDP and/or population growth will on average also experience an 

increase in domestic and international air traffic. Considering correlations between population and air traffic 

growth have been observed, it is also one of the challenges that exist for the long-term economic stability of 
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the aviation industry. The Norway 2022 National Population Projections [5] report estimates a net positive 

population growth in Norway, from 2022’s population of 5.4 million to 6.1 million in 2060 and 6.2 million in 

2100. The report also describes an increase in aging, with over 25% of the population being aged 70 or over 

by 2100, with there being more older people than children and teenagers already by 2031.  

The United Nations report [6] provides a comprehensive overview of the population projections for different 

regions in the world. The UN report observes a noticeable decrease in population growth from 1950 and 

onwards, with the rate of population growth falling below 1% for the first time in 2020. The report elaborates 

that reduced levels of fertility is the main reason behind the steady decrease in growth.  

2.2. Machine Learning Algorithms 

There are many different machine learning algorithms, each with its benefits and drawbacks. These algorithms 

are often split into separate categories, where one of the main deciding factors when choosing an algorithm is 

the type of data that will be used during training. Within the context of this paper, which focuses on the 

supervised learning algorithms, LSTM, SVRM, and RF. Supervised Learning algorithms are algorithms that 

use labeled training data to improve their ability to make correct predictions or infer a function based on the 

labeled data [17]–[19]. The following three chapters will provide a short theoretical overview of the SVRM, 

LSTM, and RF algorithms, as those are the algorithms that are trained and evaluated on the passenger data 

within the context of this paper. 

2.3. Support Vector Machines & Support Vector Regression Machines 

Support Vector Machine (SVM) is a learning machine first introduced by Cortes and Vapnik [20] for the 

purpose of two-class classification problems with high generalization capability. For a two-class linear 

classification task, SVM is a supervised learning model that attempts to find the best fit for a hyperplane in an 

n-dimensional space to accurately classify the data points [21], [22]. 

SVMs can also be used in non-classification applications such as regression tasks, in which case they are 

referred to as Support Vector Regression Machine (SVRM), or Support Vector Regression (SVR). Introduced 

by [23], and similar to an SVM, SVRM is a supervised learning algorithm, which for a regression task, outputs 

a continuous value. SVRMs attempt to define a hyperplane that would fit the largest possible amount of data 

points [21]. SVRM has also been widely used for time series forecasting, showing that the algorithm can be 

adapted to a wide range of time series tasks, in part due to its flexibility of using different kernels which allows 

it to understand non-linear relationships by mapping the input data to higher dimensions [24], [25]. 

2.4. Recurrent and Long Short-Term Memory Neural Networks 

A Recurrent Neural Network (RNN) can recall past events during training through information loops within 

the hidden layer, which allows the network to recall previous information that may aid it in learning about the 

current sequence. An example use case of an RNN can often be found within natural language processing, 

where it may be useful for the network to know what word came before the word or sequence it is attempting 

to predict [26]. While there are different types of RNN, a standard RNN refers to, in part, the network having 

one or more hidden layers which contain recurrent neurons. Recurrent neurons, when compared to the more 

basic ANN neurons such as the Perceptron, may receive or output information from and to other neurons, 

which may reside in the current hidden layer or in other hidden layers from within the same network, all of 

which depends on the specific RNN setup [26], [27]. 

The LSTM architecture is an extension of RNNs and addresses the issue of decaying and vanishing error 

backflow by adding additional units to the network such as memory cells and gate units. These memory cells 

and gate units, like the recurrent neurons, reside within the hidden layer of the network, which may also include 

other types of units depending on the type of network [28]. The LSTM architecture includes numerous 

activation layers each with its own activation function. The activation layers, as well as the corresponding 

activation functions, to a large extent, are there to control the flow of information to the cell state. The cell state 

is effectively the long-term part of the LSTM model, which includes the information being retained within the 

memory cell. That information can be, in addition to the information added through the gated units, passed on 

to the next cell [26], [27]. 

2.5. Decision Trees and Random Forests 

A Random Forest, first introduced by Breiman [29] is an ensemble machine learning algorithm that consists of 

numerous decision trees that train on a random subset of training data and features. An ensemble method refers 

to the combination of the predictions of numerous algorithms which, together, can provide a more accurate 

final prediction. Bootstrap Aggregation (Bagging) is an example of an ensemble method, also introduced by 
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Breiman [30], which helps by reducing variance within the algorithm by voting, for classification, or averaging, 

for regression predictors. A decision tree algorithm can be used both for classification or regression problems 

and is a supervised learning method that uses a tree-like structure. 

2.6. Applications of Machine Learning & Forecasting Algorithms 

Ojo and Ogunnusi [31] propose a Support Vector Regression Machine (SVRM) based model for the purpose 

of predicting air passenger traffic for the Muritala Mohammed International Airport in Nigeria. The basis for 

the study includes 132 months of data for the period of 2007-2018 and uses Root Mean Squared Error (RMSE) 

as the basis for model evaluation. The research is in part focused on finding out which SVRM Kernels are more 

effective given the particular task and data.  

An application of Artificial Neural Network (ANN) was used by Putra and Safrilah [32] for the prediction of 

the capacity of a runway at Juanda International Airport, Indonesia from January 2016 to March 2016. The 

researchers found that the ANN was generally able to imitate the fluctuations of runway capacity and suggest 

that similar models can be used by airports to improve the management of runway capacity. A Neural Network 

(NN) developed by Blinova [33] is a multi-layered “focused time-lagged feedforward network”, which the 

researcher describes as a network with a short-term memory concentrated in the input layer, using the standard 

backpropagation algorithm for learning. The researchers report the forecasting error for the NNs during the 

adaption stage to be below 5%. The data that was used was between the intra-regional and inter-regional 

passenger traffic in Russia between the years 2006 and 2010, with the models having the ability to adequately 

predict the air passenger traffic demand for the future 2-3 years.  

An autoregressive neural network called DeepAR developed by Salinas et al. [34] has the potential to deal with 

a wide range of probabilistic time-series based forecasting problems. The model is based on the recurrent neural 

network architecture and can produce accurate probabilistic forecasts. The model can be applied to a wide 

range of tasks, including traffic prediction. 

2.7. Time Series Forecasting Algorithms 

Statistical forecasting algorithms, such as the Auto Regressive Integrated Moving Average (ARIMA) and 

Seasonal Auto-Regressive Integrated Moving Average (SARIMA), first introduced in 1976 by Box and Jenkins 

[35], can be used for the purpose of making time series forecasting. Some of these algorithms have also been 

used for the purpose of making predictions within the aviation industry [36]. ARIMA models consist of 3 main 

parameters, the autoregressive, the integrated, which is the differencing factor, and the moving average 

parameter, which leverages previous forecasting errors instead of values to forecast future values [36], [37]. 

The SARIMA algorithm expands upon ARIMA by adding seasonality to the forecast. SARIMA expands upon 

ARIMA, keeping the previous 3 parameters of ARIMA, autoregressive, integrated, and moving average, 

expanding the algorithm by adding the seasonal autoregressive, seasonal integrated, and seasonal moving 

average parameters [37].  

An application of a multivariate ARIMA model for the purpose of predicting air transport demand has been 

done by [12]. A SARIMA-SVR approach has been proposed by [38] for the purpose of aviation planning and 

capacity management. 

3. METHODOLOGY 

In this section, we will explore and discuss the methodologies, techniques, and tools used in each step of the 

data collection, and processing as well as hyperparameter tuning and model evaluation. Figure 3. Stages of the 

studydemonstrates the stages and the steps of our research efforts.  
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Figure 3. Stages of the study 

 

 

3.1. Data Collection & Processing 

Two components make up the dataset used in the research, both being hourly. The first is the passenger data 

and the second is the weather data. The passenger data describes the number of passengers present at the 

terminal of Oslo Gardermoen Airport, Norway, at each hour of the day. The data range between 01.01.2009 - 

31.12.2019 and is provided by Avinor [7]. The passenger data includes the date, time, and amount of passengers 

present at the terminal at each hour. The amount of passengers at the terminal is defined by passengers that 

either depart or arrive on an airplane at the airport, this includes Terminating and Transferring passengers.  

Terminating passengers are defined as passengers that either begin or end their trip at the airport, and transfer 

passengers are defined as passengers that arrive and depart the airport on different aircraft or the same aircraft 

bearing a different flight number, and are counted twice. In addition, the passenger data only includes scheduled 

passenger flights. The second part of the dataset is the weather data, which consists of the Air temperature and 

Mean wind speed at the Oslo Airport Weather Station Gardermoen SN4780, provided by the Norwegian Centre 

for Climate Services [8]. 

Data processing is necessary to clean and prepare the data before the model training. This includes data 

cleaning, removal of null data points, normalization in the range of 0-1, splitting it into training, testing, and 

validation datasets as well as input data reshaping. The data split is done in a 60/20/20 ratio where 60% is used 

for training, 20% is used for validation and the final 20% is used for testing. The allocation of 40% of the data 

for validation and testing datasets was deemed necessary in order to reduce the risk of the model overfitting as 

well as improve the process of hyperparameter tuning.  

3.2. Network and Algorithm Modelling 

We are going to apply three machine learning models which are: Long Short-Term Memory Model (LSTM), 

Support Vector Regression Machine Model (SVRM), and Random Forest Model (RF). The three models will 

be evaluated based on Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). For each of these 

values, the lower the value the better the performance. Mean Squared Error measures the average squared 

difference between the predicted and the actual value, in this case, it’s the value of Passengers. The closer the 

value for MSE is to 0, the fewer errors that the model makes when making predictions, and their squared 
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difference against the actual values is computed. An additional observation that is used in the model evaluation 

and the comparative analysis is the analysis of predicted versus actual values. Observing the predicted vs actual 

values is vital for the scope of this paper as it allows the research to observe if the model can emulate the 

seasonality and cyclic fluctuations of Passengers in an hourly format.  

The reason MSE and RMSE are valuable when discussing the evaluation of the models, within the scope of 

this paper, is the models are being trained to emulate the seasonality and fluctuations observed in the 

Passenger’s feature in the real data. Since the data exhibits seasonality distributed fluctuations that are repeated 

sequentially, 24 hours at a time, metrics that penalize larger errors, like MSE and RMSE, are more appropriate. 

Furthermore, to the extent of this paper, smaller errors are not as impactful as larger ones because even though 

the predicted values might not be identical to the actual ones, the important factor for the models’ predictions 

is that they emulate the daily fluctuations or seasonality that the actual data exhibits. On that basis, the models 

will be evaluated on their performance in terms of the MSE and RMSE values, as well as discussing their 

ability to emulate the cyclical fluctuations of Passengers by observing the predicted values. 

The network and algorithm modeling covers the input data reshaping, model hyperparameter tuning, and 

network architecture. The input shape of the x component of the data for the LSTM model is adjusted to a 3D 

shape of (samples, steps, features), and for the SVRM and RF models to a 2D shape of (samples, steps ∗ 

features). For the hyperparameter tuning, each model starts with a combination of baseline parameter values, 

which are then tuned and tested, with the ones that yield the lowest values of MSE and RMSE, without showing 

signs of overfitting, being preferable. For all three of the models, a steps value of 24 is used, which is chosen 

as it represents one full day and a features value of 7 is used, as that is the total number of features in the 

finished dataset. 

4. DATA COLLECTION & PROCESSING 

The completed dataset that is used for model training contains hourly data ranging from January 1st, 2009, to 

31 December 2019, with a total of 96185 data points. The dataset contains the following 7 features and their 

value ranges: 

Time: Ranges from 0-23 and describes the hour of the day that the data point corresponds to.  

Day: Ranges from 0-31, Month: Ranges from 0-12, Year: Ranges from 2009 to 2019. 

Passengers: Number of passengers present at the Oslo Airport Terminal at that specific hour. 

Air temperature: The air temperature at that specific hour. 

Mean wind speed: The mean wind speed is the mean value of the wind speed of the 10 minutes prior to 

collection. 

Different data Processing was done to refine and enhance the datasets and prepare for the analysis phase: 

4.1. Passenger Data 

The raw passenger data included the yearly CSVs that included the features: Date, Passengers, Arrival or 

Departure, Domestic or International, Hour, Airport, and IATA code, in an hourly format. The data was 

processed by taking only the data for Oslo Airport Gardemoen, as well as summing the amounts of passengers 

at each corresponding hour, regardless of whether they were domestic, international, arriving, or departing. 

Each yearly processed passenger csv contained 3 features, the date, hour, and passenger amount. For most of 

the years processed, this resulted in 8760 rows of data for 1 year, which is given by multiplying 24 hours by 

365 days in a year. Some of the years had missing data, but this was very rare and, in most cases, only accounted 

for 2-4 days of missing hourly data from an entire year. 

4.2. Weather Data 

The raw weather data included yearly CSVs containing 3 features, Datetime, Air temperature, and Mean wind 

speed. Considering the passenger data was recorded at each round hour, and the weather data was in a minute 

format, meaning it had multiple entries for each hour, it had to be processed accordingly to accurately match it 

with the passenger data. This was solved by extracting the datetime components of the Datetime feature and 

selecting the data point with the closest datetime component to the closest round hour. For example, if there 

were two data points close to the round hour of 14:00, one being 14:10, and one being 13:40, the data point for 

14:10 would be chosen as it is the closest one to 14:00.  

The other data point, in this example for hour 13:40, would be discarded, unless it is also the closest data point 

for the previous hour of 13:00, in which case it would then be assigned as the 13:00 data point. Performing this 

processing, as with the passenger yearly data would yield 8760 rows, having one row for each hour in the year. 
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Furthermore, when there were missing data in the passenger data, the rows corresponding to those dates were 

removed from that year’s weather data, and vice versa, ensuring both files matched chronologically. 

The reason for using this specific weather data is that weather can have a significant impact on an airport’s 

operations, this can include aircraft delays, air passenger traffic, and runway availability. While numerous 

meteorological variables may impact the operation of airports, the air temperature, as well as the wind speed, 

have been shown to impact the operations of an airport, for example, causing delays or cancellations during 

extreme weather conditions [39]–[41]. 

 

 

4.3. Merged, Chronological Data 

With the specific processing of both the passenger and weather data, the files are then merged chronologically 

in order to create a complete dataset starting Jan 1, 2009, and ending on 31 Dec 2019. The first 10 rows of the 

complete dataset are examined by the following Table 1 

Table 1. The first 10 rows in the completed dataset 
Time Day Month Year Passengers Air Temperature Mean Wind Speed 

1 1 1 2009 0 -10 0.0 

2 1 1 2009 0 -10 0.0 

3 1 1 2009 0 -13 0.0 

4 1 1 2009 0 -12 0.0 

5 1 1 2009 0 -12 0.0 

6 1 1 2009 187 -13 0.0 

7 1 1 2009 122 -14 0.0 

8 1 1 2009 83 -12 0.0 

9 1 1 2009 215 -13 0.0 

10 1 1 2009 524 -11 0.0 

Table 1 shows the first 10 rows in the completed dataset, where “Time” refers to the hour and ranges between 

0-23, with the corresponding values of Passengers, Air temperature, and Mean wind speed corresponding to 

that specific hour, day, month, and year. 

The data is then first normalized in the range of 0-1, which is necessary because each of the data features 

operate on a different range. This enables the model to better understand the training data as each numeric 

value then operates in the same range. 

Once normalized the data is split into 3 datasets, in a 60%/20%/20% ratio for training, validation, and testing 

data respectively. This gives 57711 data points for training, 19237 for validation, and 19237 for testing. 

The last step involving the data prior to model training is reshaping. Reshaping the data for the LSTM model 

as an example, requires the data to be in a sequential format. This length of the sequence is the steps variable, 

which for the particular LSTM model is 24, meaning each sequence is 24 data points long. The reshaping for 

each model will be elaborated upon in each model in the next section. 

5. MODELING & HYPERPARAMETER TUNING 

In this section, we will demonstrate the modeling, hyperparameter tuning, and implementation of each of the 

three models, LSTM, SVRM, and RF. In each model, we will discuss the data input shape and the 

hyperparameter tuning. The hyperparameters will be tuned by experimenting with different combinations in 

order to determine which combination of hyperparameters yields the best performance, where the model’s 

generalization ability is prioritized. Moreover, a large gap between training, validation, and testing performance 

where lower values for the training dataset may be an indication of the model overfitting the data, with higher 

values indicating underfitting. With that in mind, while lower values for MSE / RMSE are preferable, the 

hyperparameter tuning strives to find a balance between overfitting and underfitting, so that the final model is 

stable and has a good generalization ability. 

5.1. LSTM Network Modeling 

The LSTM model consists of 1 hidden LSTM layer with 128 neurons, using a tanh activation function, 1 

dropout layer, dropping 20% of the neurons after the LSTM layer, and a dense, single neuron, output layer 
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using a linear activation function. The model also uses the Adam optimizer algorithm with a learning rate of 

0.001. The input data shape is defined as (samples, steps, features) where steps correspond to the sequence 

length of 24 and features the number of features in the dataset, which is 7. 

5.1.1. Input Shape 

After data normalization, the data is run through a sequence function that creates the LSTM sequences, 

outputting the reshaped numpy arrays for the x and y components of the data, for the training, validation, and 

testing datasets respectively. 

The x-train component of the training dataset pertains to the input sequences for the LSTM model, which have 

a shape of (57687, 24, 7), corresponding to (samples, steps, features). 

The y-train component of the training dataset is the target parameter and corresponds to the Passengers column. 

The shape of this component is (57687, ) which corresponds to (samples, ), which has the same length as the 

x-train component because each input sequence has a corresponding target Passengers value. 

The same logic is used for the validation and testing datasets. The x val component of the validation dataset 

has an input shape of (19213, 24, 7), corresponding to the same variables as already described in the training 

dataset. The y val component of the validation dataset has an input shape of (19213, ). 

Similar to the validation input data, the x test and y test components of the testing dataset have the same input 

shape as the aforementioned validation data shapes, which is the case because both represent 20% of the total 

data respectively. With the data normalized, split, reshaped, and sequential, it is ready to be fit in the LSTM 

model. 

5.1.2. Hyperparameters & Network Architecture 

The LSTM model has a large range of hyperparameters that can be tuned according to the data and the specific 

problem with the aim of improving the model’s performance. For this particular data and problem, the 

following hyperparameters (Table 2) have been declared and tuned, with the final model using the following 

parameter values: 

Table 2. LSTM Model Hypermeters 

Steps Features Batch Size 
NO. of LSTM 

Layers 

NO. of 

Neurons 

Activation 

Function 
Optimizer 

Optimizer 

Learning Rate 

24 7 128 1 128 tanh Adam 0.001 

Specifying and using a set seed where possible was important as it allowed for proper hyperparameter tuning 

by ensuring consistency between training iterations, to precisely observe which parameters contribute to 

increasing model performance. For that reason, a seed number of 42 is used, this includes Numpy [42], 

TensorFlow [43], as well as network weight initialization and dropout layers, which are used in the LSTM 

model. This seed number doesn’t represent anything specific and just ensures that the same values and neurons 

would be outputted or picked each time the code was executed. 

The parameter tuning was done in the following order: activation function, optimizer algorithm, optimizer 

learning rate, batch size, layer amount, and neuron amount. Once a particular parameter was determined as the 

best performing, which for example between tanh and reLU was tanh, the tuning continued with tanh as its 

activation function. 

The hyperparameter tuning was done by tuning a single parameter at a time, beginning with a single-layered 

LSTM architecture with 128 neurons, followed by a Dropout layer with a rate of 0.2 and a dense output single 

neuron layer using a linear activation function, which remained as the output layer also in the final model. 

5.2. SVRM Algorithm Modeling 

The trained and tuned SVRM model that was trained on the training dataset, and evaluated on the training, 

validation, and testing dataset uses the following parameters (Table 3): 

Table 3. SVRM Model Hypermeters 

Steps Features Kernel Degree Gamma 
Coef0 

Term 
Epsilon 

Regularization 

parameter C 

24 7 Polynomial 2 Scale 1 0.01 1 

5.2.1. Input Shape 
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The SVRM model uses the same process as the other models in regards to data normalization in the range of 

0-1, after which the data is run through a sequence function that outputs the numpy arrays of the x and y 

components of the data, for the training, validation, and testing datasets respectively. 

As with the LSTM model input shape, the sequence function creates the x and y components of each dataset 

using the data and the number of steps, which is 24, after which it is reshaped into a 2D format in order to be 

used with the SVM model. 

The reshaping of the data results in the format of (samples, n steps ∗ n features). The data has to be flattened 

to 2D in order for it to be fit into the SVRM model. In contrast to simply fitting the data in the format of 

(samples, n features), multiplying the number of steps by the features may allow the model to also train on 

sequential patterns that may exist within the data. 

After the reshaping, and right before being fit to the model, examining specifically x train, its shape output is 

(57687, 168), the first number of which is the number of samples, which corresponds to 60% of the total data, 

and the second number being the product of n steps ∗ n features. The y component of the training dataset 

corresponds to (57687, ). 

5.2.2. Hyperparameter Tuning 

The first evaluation examined each kernel, including rbf, polynomial 2nd degree, polynomial 3rd degree, and 

linear, each of these kernels were paired with different combinations of gamma and/or coef0 term values, where 

applicable. The best performing kernel combinations are then compared against each other, with the best 

performing configuration being the polynomial 2nd degree kernel using ’scale’ for gamma, and a coef0 term 

of 1. The final two parameters that are tuned after that are the regularization parameter, C, and the value for 

the epsilon. 7 different values of C were tried, including 0.1,0.5,1,2,3,4, and 5, with the overall best performing 

one not changing from C=1, as it provided the best performance on the testing dataset. The values that were 

tested for epsilon include 0.01,0.05,0.1,0.2, and 0.3, with 0.01 being the one that showed the best performance 

for all 3 dataset evaluations. Attempting lower values for epsilon was not computationally feasible, as lower 

values of epsilon exponentially increased training time, without significantly improving performance. 

5.3. Random Forest Algorithm Modeling 

Table 4 shows the final trained and tuned Random Forest model with the following parameter values: 

Table 4. Random Forest Model Hypermeters 

Steps Features Estimators Max Depth 

Min. 

Samples 

Split 

Min. 

Samples 

Leaf 

Max. 

Features 

24 7 100 10 2 2 0.75 

5.3.1. Input Shape 

The input shape processing for the Random Forest (RF) model is identical to the SVRM input shape discussed 

in section 5.2.1. 

5.3.2. Hyperparameter Tuning 

The RF model tuning starts with the max depth parameter, for which a value of 10 produced the best testing 

performance without a large risk of overfitting the training data, which the model did when a value of ‘None’ 

was used. The following parameter is the estimators parameter, which refers to the number of decision trees 

within the RF model, with negligible differences between the tested values, a value of 100 is used. Different 

combinations of min samples split and min samples leaf were tested, with again negligible differences, with 

the final model using 2 for each respectively as that configuration yields good overall performance without 

exaggerating model complexity. The final parameter that was tuned is the max features, where a value of 0.75 

means 75% of the features were considered when the trees were looking to split the nodes. 

6. COMPARATIVE ANALYSIS 

The comparative analysis chapter will analyze and compare the results of the LSTM, SVRM, and RF models 

that were trained on the same training dataset, and evaluated on the same validation and testing datasets, with 

the performance evaluation based on the lowest MSE / RMSE values. In addition to the actual performance, a 

comparison of each of the models’ predicted values for the first 48 hours of testing Passenger data will be 
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compared against each other, based on the actual first 48 hours of Passenger data. This comparison will not 

only observe how large the differences between the actual and predicted values are for each model respectively 

but also discuss each model’s ability to generalize and follow the daily fluctuations which are exhibited in the 

real data. 

6.1. Performance Analysis 

The performance analysis will discuss the results of each model and how each model compares to the others, 

both to the extent of their generalization ability and the risk of overfitting. While each model has had extensive 

hyperparameter tuning, it is important to note that, while the research has done its best to tune each model to 

make sure the comparison was fair, it is possible that the performance shown here is not the absolute best 

possible that each of these algorithms can attain. Further performance improvements may be possible through 

various methods such as different hyperparameter combinations or alternative feature engineering. 

 

Table 5 Performance Comparison Between LSTM, SVRM, and RF models 

 

 

 

Table 5 shows the performance comparison between the LSTM, SVRM, and RF based on MSE / RMSE, with 

the lowest values in bold. These observations show that, for this dataset, the LSTM model is showing the best 

performance for both the validation and testing datasets, with 0.00377/0.06141 and 0.00445/0.06667 MSE / 

RMSE respectively. For the training dataset, the RF model has the lowest scores of 0.00209/0.04569 MSE / 

RMSE. The LSTM and SVRM models have a negligible difference in MSE / RMSE values for the training 

dataset, with only a value of 0.00004/0.00043 MSE / RMSE difference between the two, in favor of the SVRM 

model. 

Risk of overfitting  

The LSTM model has the lowest indication of overfitting the data between the three models, as it has the 

smallest gap between the training and testing performance, with a difference of 0.00177/0.01489 MSE / RMSE. 

The RF model has the largest indication of overfitting on the data, considering it has the lowest MSE / RMSE 

values for the training dataset, at the same time as it has the highest MSE / RMSE values for the validation and 

testing datasets.  

Generalization Capability  

As briefly mentioned, the LSTM model has the best performance, with the lowest values of MSE / RMSE for 

both the validation and testing datasets, while still maintaining comparable training performance. There are 

numerous reasons why the LSTM model ends up having the best performance, with one of the bigger reasons, 

compared to the other two models, is the LSTM model has the ability to learn from 3-Dimensional input data. 

This is an advantage that, to the extent of this paper, dataset, and task, a neural network such as LSTM has over 

the other two algorithms. This means that the input data for the LSTM model can be in the shape of (samples, 

steps, features), while for the other two, the input shape had to be flattened to 2-Dimensions, in the shape of 

(samples, steps ∗ features). This advantage allows the LSTM to be able to train on and learn time-dependencies 

that exist within the data which is, for this time-series dataset, one of the driving factors that make the LSTM 

model the best performing one on the basis of MSE / RMSE. 

Model Evaluation 

Training Performance MSE/RMSE 

LSTM 
SVRM 

RF  

0.00268 / 0.05178 
0.00264 / 0.05135 

0.00209 / 0.04569  

Validation Performance MSE/RMSE 

       LSTM 

       SVRM 

       RF 

0.00377 / 0.06141 

0.00395 / 0.06283 

0.00409 / 0.06396 

Testing Performance MSE/RMSE 

       LSTM 
       SVRM 

       RF 

0.00445 / 0.06667 

0.00511 / 0.07147 

0.00543 / 0.07368 
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6.2. Actual vs. Predicted Values Analysis 

This section will look at how a sample of 48 hours of actual data, corresponding to the first 48 hours of the 

testing dataset compares to the predicted Passenger values of each of the models for the same data points. The 

purpose of this comparison is threefold, for one it is to see a small example of how the models are predicting 

the number of Passengers based on unseen testing data, the second is to discuss and observe how far these 

predictions are from the actual passenger amounts, and the third is to see the model’s ability to follow the time 

fluctuations exhibited in the actual data. For this paper, the third of the aforementioned purposes of the 

comparison is the most impactful one, because while 48 hours of data is a very small example in terms of the 

amount of data points, it is possible to observe if each of the models are capable, and to what degree to follow 

the daily fluctuations of Passengers based on the hour of the day. 

 

 

 

 

Table 6 Actual vs. Predicted values on 48 hours of testing data, all three models 

 

Table 6 shows the comparison of actual vs. predicted values by each of the three models for the first 48 hours 

of the testing data. As already covered during the Performance Analysis, the LSTM model was the model with 

the lowest scores of MSE / RMSE on the testing dataset, which in turn means that it would on average have a 

smaller error margin when comparing its predictions to the actual values, when compared to the other two 

models.  

Two distinct but important observations that can be made from Table 2, are how well the models are able to 

follow the daily fluctuations of Passengers, which will be the first one to be discussed, and the issues of negative 

number predictions. While, as covered in the Performance Analysis, all three models had satisfactory 

performance, with the LSTM model having the best testing performance and the RF model having the worst, 

it is evident by the table that all three can roughly follow the hourly fluctuations of Passengers, for these 48 

hours of data. 

The actual passenger values increase from Index 0 to Index 11, then decrease from Index 11 to Index 22, then 

they start to increase again at Index 23, and so on. The same behavior, with the accuracy of it being to a varying 

degree, can be observed by all three models, which, for these hours, roughly follow the same pattern of 

increasing and decreasing the passenger amounts as the actual values do. The actual values for each day drop 

to 0 for approximately 3-5 hours a day, which can vary between days, months, and years, but in general, there 

Index Actual LSTM SVRM RF Index  Actual LSTM  SVRM RF 

0 1541 1310 1701 1152 24 5304 4100 4544 4566 

1 2097 1743 1859 1928 25 7067 7774 6701 6582 

2 2398 2273 1801 2324 26 5458 5513 5203 5059 
3 2540 2889 2749 2580 27 4727 4664 4909 4557 

4 4294 3405 3357 2973 28 4122 4252 4059 3722 

5 5761 4508 4147 3738 29 4826 3696 3603 3428 
6 5273 5883 6533 4776 30 4337 4456 4678 4744 

7 6506 6495 5609 4822 31 5399 4761 4575 4417 

8 6654 6960 6395 5697 32 5547 5495 5663 5163 

9 6876 7280 7080 6510 33 5517 6436 6622 6550 

10 7036 7388 7590 6690 34 5506 6681 6595 6522 

11 7919 7206 6912 6337 35 5210 5596 5259 4834 
12 7723 6866 6582 6432 36 5218 4710 4740 4647 

13 6387 6264 5708 5592 37 3667 3585 3402 3704 

14 5894 5286 5746 5069 38 3236 2568 2759 2915 
15 4796 4393 4433 4248 39 1881 1906 2040 2172 

16 2184 2331 2071 2144 40 943 1181 1398 1438 

17 499 513 297 639 41 583 312 313 335 
18 181 115 -147 58 42 0 86 -43 66 

19 0 70 -63 58 43 0 28 -121 23 

20 0 79 -110 17 44 0 3 -121 4 

21 0 13 8 18 45 0 -110 -87 3 

22 99 11 275 71 46 0 -29 -100 80 

23 1272 1075 1561 1383 47 1333 1057 1202 1379 
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seem to be 2 or more hours in each day with no passengers present at the terminal. Observing how each of the 

models deals with these 0 hours, it is possible to observe a significantly different way they are being handled.  

For the LSTM model, for these particular 48 hours, it managed to stay above 0 for the majority, only going 

below 0 in two instances at Index 45 and 46. For the SVRM model, it exhibited a tendency to undershoot in 

this example, predicting negative passenger values for almost every 0 hour, except for 1 at index 21 where it 

predicted 8 Passengers. And the RF model, in terms of not predicting negative values, performed the best of 

all three without dropping under 0 once, for these 48 hours. This may be an indicator that the RF model, while 

having the worst performance based on MSE / RMSE, might be more resilient than the other two in its ability 

to learn that there shouldn’t be negative passenger values predicted. 

6.3. Model Complexity & Scalability 

The choice of models to be compared was done to encompass two different algorithms, and one neural network, 

to explore how different architectures would perform when trained on this dataset. The SVRM and RF models 

used the appropriate libraries from Scikit-Learn [44], and the LSTM model used the appropriate libraries from 

TensorFlow [43]. The LSTM model, in contrast to the SVRM and RF models, is a neural network, and while 

this particular one, through the hyperparameter tuning only uses a single hidden LSTM layer, has a large 

number of architecture combinations possible in terms of layer and neuron configurations. With that said, in 

terms of complexity, without counting the steps and features parameters, as they are shared for all three models, 

the LSTM and SVRM models each had 6 hyperparameters that were tuned respectively, and the RF model had 

5 hyperparameters. In terms of model complexity and structures, while all three models can potentially be 

scaled to handle larger datasets, the LSTM model has in comparison a broad potential to be scaled further by 

the addition of additional layers and neurons, as well as the most complex one due to the nature of the LSTM’s 

different gating mechanism contained within each LSTM layer. 

7. CONCLUSION 

The aim of the research, including the order it is discussed, was done to first provide an overview of the aviation 

industry, underlining the current and future challenges to emphasize the reason the research within these fields 

is important. Building on that, the main topic and research objectives, in addition to the impactful literature 

review, were the creation, training, evaluation, and comparative analysis of the SVRM, RF, and LSTM models. 

In order to present the comparative analysis and evaluation findings in a manner that made sense within the 

extent of this paper, in addition to why these algorithms were chosen, an overview of relevant literature that 

discusses machine learning, neural networks, and the SVRM, RF, and LSTM architectures, in particular is 

done. 

Further, numerous applications of machine learning algorithms and neural networks for the purpose of time-

series forecasting were discussed, in addition to relevant literature about these applications within the aviation 

industry, with research that emphasizes the value of the research. The aim of the research was to contribute to 

existing research which has adapted machine learning algorithms for the purpose of aiding the aviation 

industry. The research was done to provide additional alternatives that may be beneficial to the aviation 

industry. Further, providing a broad overview and comparing two machine learning algorithms and one neural 

network against each other, may be beneficial as it provides a distinct overview of how these different 

architectures can learn from this format of passenger and weather data.  

While the performance of the models, in terms of accurate passenger number predictions, would have varying 

degrees of error, the important observation of the models’ prediction values is, were they able to follow the 

hourly fluctuations of passengers. For this dataset, all three models, within the extent of the tested values, being 

the 48 hours of testing data, were able to roughly follow the fluctuations of passengers, with each model having 

varying degrees of error. 

8. FUTURE WORK 

Numerous paths may be of interest for future work to the extent of enhancing the aviation industry’s ability to 

predict future air traffic flow. To begin, there are numerous other machine learning algorithms and neural 

networks that could be trained and evaluated to determine if there may be better alternatives to the LSTM, 

SVRM, or RF models. Further, one of the main methods of conducting a similar analysis that builds on top of 

this paper is to use different data. There are two possible avenues of this, one of them may be the use of 

univariate data where only the passenger value and datetime feature are included, which can be combined with 

the training of additional algorithms. The second avenue and the recommended one is to use multivariate data 

and attempt to collect data pertaining to highly impactful features such as a country’s GDP and population 

growth, or similar relevant economic or social factors. The main challenge with this approach is the granularity 
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of data, which for the dataset in this paper was hourly, which greatly limited the amount of available relevant 

data that could realistically be combined with the hourly passenger data. 
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