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ABSTRACT 

Longitudinal data analysis is gaining prominence, particularly in fields like medicine and economics. This 

research is centered around the collection and analysis of longitudinal data, with a specific focus on cluster 

analysis. The thesis places emphasis on the non-parametric cubic B-spline model, known for its smoothness, 

flexibility, and ability to capture intricate patterns and fluctuations in data due to continuity in its derivatives  . 

To accomplish clustering, the penalization method was employed. It categorizes longitudinally balanced 

data by penalizing the pairwise distances between cubic B-spline model coefficients using a penalization 

function, such as the recently devised concave penalization function. The cubic spline penalty CSP, part of 

the pair distance penalty, employs the nonparametric pairwise grouping (NPG) method. Model selection 

criteria, like Bayesian Information Criteria (BIC), help determine the number of clusters. Optimization 

methods, including the alternative direction method of the multiplier ADMM algorithm, are applied to 

approximate solutions within the R statistical program  . 

In a simulation study, balanced longitudinal data for 60 and 100 subjects were generated with ten 

replicates each. The experiments demonstrated the effectiveness of the CSP penalty function in the clustering 

process . 

For practical application, the study involved the analysis of data from kidney failure patients, collected 

from Ibn Sina Teaching Hospital for Dialysis in Mosul over seven consecutive months in 2023. The NPG 

aggregation method and CSP penalty functions were used, resulting in two groups based on the glomerular 

filtration rate of the kidneys. This rate determines the required dialysis frequency, either twice a week or 

thrice, according to medical criteria. 

 

Keywords: cubic B-spline, , cubic spline penalty CSP,  ADMM algorithm, kidney failure, 

nonparametric pairwise grouping (NPG) 

 

1.Introduction 
Many words are used to describe longitudinal data. In clinical and environmental studies, data of 

repeated measurements is referred to as (longitudinal data), whereas in economic studies, it is referred to as 

(panel data), or time series and cross-sectional data. It combines the geographic, sectional, and temporal 

dimensions [12] [31].  

Data is collected from the same individuals or points at many points in time in longitudinal studies. This 

enables researchers to study changes over time and the effects of interventions or treatments [21].  

Some examples of longitudinal data include tracking the academic performance of students over multiple 

school years, monitoring the health outcomes of patients over several months or years, or following the 

career trajectories of workers over some time[19]. When cross-sectional observations are collected for the 

same time periods, the longitudinal data is referred to as balanced longitudinal data. However, if the 

longitudinal data has missing values at some point observations for some of the groups, it is considered 

unbalanced longitudinal data [46]. 

Certain longitudinal data models can only be applied to balanced datasets. If the panel datasets are 

unbalanced, they may need to be reduced to include only the consecutive periods for which all individuals in 

the cross-section have observations [22]. There is a situation of equal and unequal space, in addition to the 

distance between successive measurements. 

Cubic B-spline is a popular mathematical method of analyzing longitudinal data.  It is possible to 

efficiently represent and analyze smooth trajectories and directions seen in longitudinal data using a cubic B-
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spline. This powerful combination, which is comprised of a collection of knots and a set of basic functions, 

provides a valuable way to comprehend the dynamic behavior and evolution of subjects through time. 

Coffey et al (2014) pointed out that the spline basis functions consist of a set of piecewise polynomials 

that connect smoothly at specific points in the time interval,[13] which are known as knots, and the number 

of basis functions used depends on the number of knots selected. The basis functions used in a cubic B-spline 

are cubic polynomials that are defined over a local interval between adjacent knots. The knots themselves are 

typically equally spaced over the range of the predictor variable and are used to determine the location and 

shape of the basis functions. The Cubic B-spline basis functions are created to be continuous and 

differentiable and to have a smooth second derivative, that is, the curve of the cubic spline regression 

function will be in the form of curves that make it more accurate in approaching the real regression curve, 

and this is reflected in reducing the value of the standard of error, which makes it well suited for modeling 

smooth and flexible trajectories over time. 

Subjects' trajectories can be clustered by employing non-parametric smoothing methods like B-spline 

techniques treated as a convex optimization problem [11]. In this approach, each subject penalizes the 

pairwise distance between their centers, enabling the estimation of centers of clusters and the simultaneous 

determination of the number of groups. This method also incorporates the covariates of interest for the 

univariate model. 

 

  

1.1 Literature review  

In this paper, we are interested in the method of cluster analysis for longitudinal data using a 

nonparametric cubic B-spline function, but not with the common methods such as the K-mean method, we 

used the method proposed by Zhu and Qu (2018) and we will investigate whether the method of clustering 

using penal functions applies to cubic B-spline, that is, we are developing the method by applying it to cubic 

B-spline functions. 

Many studies have been conducted in the field of longitudinal data cluster analysis, such as: Abraham et 

al (2003) collected data with a focus on the functional nature of clusters[7], and the method was based on a 

two-stage compilation: the B-spline data function and the division of model coefficients using the K-means 

algorithm. Fitzmaurice and Ravichandran (2008) sought to investigate repeated measures of heart patients as 

well as changes in liver function over a 12-month period. The researchers Genilonini and Falissard (2010) 

compared artificial data to real data (epidemiological data) using the kml design, which is an application for 

determining paths of longitudinal data using k-means. Ali and Abd al-Sattar (2014) studied the mixed linear 

parametric and non-parametric models (kernel functions) to analyze wind speed data in Iraq that take the 

form of repeated measurements over the years. Eight meteorological stations were chosen at random from all 

stations in Iraq, so the researchers assumed that each cluster would represent a station for twelve months, and 

preference was chosen using the mean squared error (MSE). Coffey et al. (2014) provided an alternate 

method for aggregating gene expression patterns over time using linear mixed effects models and p-spline 

smoothin g [13]. Schramm and Vial (2015) offered another study that used an extended baseline as a strategy 

for treatment efficacy clustering in longitudinal data. Zhu and Qu (2018) suggested a grouping approach that 

uses the pairwise clustering penalty on the non-parametric model coefficients to construct subgroups on 

clustering profiles of longitudinal data subgroups. Mohamed and Mohammed (2020) conducted a study in 

which they used kernel methods by the k-means method for cluster analysis, which is aimed at clustering 

observations in the same cluster that data are homogeneous and not homogeneous with the other clusters, in 

nonlinear data, a method algorithm with k-means is misleading, so they used kernel methods. Because of its 

mathematical tractability in estimating marginal distributions, Zhan et al (2023) presented a copula kernel 

mixture model (CKMM) for clustering multivariate longitudinal data in cases where variables exhibit high 

autocorrelation  using Gaussian copula. 

The problem of this research is how to use one of the partial clustering methods and apply it to the cubic 

B-spline method. But most of the penalty methods used in penalty aggregation are common, so the idea was 

to use modern penalty functions. Which was not dealt with in the field of data collection. 

The research aims to achieve two main outcomes: 

1. Is it possible to employ the penalty method for clustering on the model non-parametric cubic B-spline 

with longitudinal data by penalizing pairwise distances of the cubic B-spline coefficient? 

2. The researcher seeks to apply a new penalty function, which is cubic spline penalty (CSP), to cluster the 

profiles of longitudinal data. 

3. The researcher aims to improve the nonparametric penalizing clustering method using nonparametric 

pairwise grouping. 
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4. In addition, applying these methods to data on patients with kidney failure, and clarifying whether there 

are differences between patients by analyzing kidney function tests. So that the specialized medical staff 

can treat each classified group in a manner appropriate to it. 

 

 

2. Material and Methods 

2.1  The model for longitudinal data  

In general , the subject-wise model for longitudinal data as follows: 

𝑦𝑖𝑗 = 𝑓𝑖(𝑥𝑗𝑙) + 𝜀𝑖𝑗                                                                                                                               (1) 

   Where yij is the response variable for subject ith,  i=1,2,..,n  , which repeats in jth times,  where  j=1, 2, …, ni  

,  fi(xjl ) is denoted  for a function for each subject, and assumed that xjl , l=1, 2, …,d ,is the corresponding 

covariate of time that can be scaled to compact interval 𝜒 ∈ [0,1]. and εij  are i.i.d error (noise)  with mean 0 

and variance 𝜎2. 
In longitudinal data analysis, many different types of functions can be used, however spline-based 

functions are commonly employed in many applications. These are constructed through smooth connections 

between polynomials with several definitions at specified points called nodes. These nodes are denoted by 

k={ k0 < k1 < … < km }, the number of base functions used depends on the number of nodes chosen [13] . 

2.2 Cubic B-Spline  

A spline basis function's degree q denotes the highest power of the polynomial used for the local intervals 

between neighboring knots. A cubic B-spline, for example, employs cubic polynomials (q = 3) at each 

interval. The order r of a spline basis function is equal to the degree plus one. This is because the number of 

coefficients needed to represent the basis function is equal to the degree plus one. For example, a cubic B-

spline has four coefficients (r = 3+1) multiplied by the knots' values and the polynomial terms in each 

interval (Chaudhuri,2013). Let r is the rth order B-spline with a set of  m knots sequences k={ 0 =k0 < k1 < …  

< km = 1 } ,  and the values k  are monotonically increasing values which may be either equally spaced, 

integers or positive. The B-spline are defined by( Carl De Boor ,1972) as follow[47] : 

Bi
q(x) =

x−ki

ki+q−1−1
Bi
q−1(x) +

ki+q−x

ki+q+ki+1
Bi+1
q−1

(x)                                                                                    (2)            

For i = 0 , ±1 , ±2 , ±3 ,…. . the basis function Bi
q(x) as define by (2) are call B-spline of degree q. and 

there are p=m + r-1  normalized B-spline basis functions of order r for each outcome .  

We introduce a special kind of spline function  of degree 3, called ( cubic B-spline) is given by [24]: 

  Bi
3 (x)          =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

(x − ki)
3

(ki+3 − ki)(ki+2 − ki)(ki+1 − ki)
if   ki ≤ x < ki+1

 
(x − ki)

2(ki+2 − x)

(ki+3 − ki)(ki+2 − ki)(ki+2 − ki+1)
+

(x − ki)(ki+3 − x)(x − ki+1)

(ki+3 − ki)(ki+3 − ki+1)(ki+2 − ki+1)
if   ki+1 ≤ x < ki+2

+
(ki+4 − x)(x − ki+1)

2

(ki+4 − ki)(ki+3 − ki+1)(ki+2 − ki+1)
 

                          (3)

(x − ki)(ki+2 − x)
2

(ki+3 − ki)(ki+3 − ki+1)(ki+3 − ki+2)
+

(ki+4 − x)(x − ki+1)(ki+3 − x)

(ki+4 − ki+1)(ki+3 − ki+1)(ki+3 − ki+2)
if   ki+2 ≤ x < ki+3

+
(ki+4 − x)(x − ki+2)

2

(ki+4 − ki+1)(ki+4 − ki+2)(ki+3 − ki+2)
 

 
(x − ki)

3

(ki+4 − ki+1)(ki+4 − ki+2)(ki+4 − ki+3)
if   ki+3 ≤ x < ki+4

  
0 otherwise

 

 

Then we can write the cubic spline function as approximation of fin(x)  

fin(x) ≈ Ωin(x) = ∑ Bi
3(xij)βin = B(x)

Tβii  , 

where fi = (fi(xi1), … , fi(xini))
T,  Ω = (Ω1

T , Ω2
T, … , Ωn 

T ), Ωi = Biβi ,  B = diag(B1, B2, … , Bn)  ,Bi =

( B(xi1) , B(xi2), … , B(xini))
T is a  matrix ni × p for each subject i, and   β = (β1

T, β2
T , … . , βn

T),  β1
T is a p-

dimensional coefficient vector with p=m+q .  
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2.3 Penalized B-spline  

In order to estimate the smoothing function, which works to reduce the sum of the squares of the penalized 

error, the penalty limit is added. Both indicated this in the following equation [25]: 

∑[𝑦𝑖𝑗 − 𝑓𝑖(𝑥𝑖𝑗𝑙))]
2
+ 𝜆1∫ [𝛽𝑙

(𝑣)(𝑥)]
2
𝑑𝑥                                                                                                                               (4)

1

0

𝑡𝑖

𝑗=1

 

Equation (4) has two components: the first penalizes the lack of fit, which can be considered as modeling 

bias, while the second applies a Roughness Penalty (RP), which addresses the issue of over-parameterization. 

The penalty function is introduced to address the fact that the least sum of squares in our model adds 

unnecessary complexity, resulting in a large variance in the estimated parameters. 

In this approach, the residuals 𝑦𝑖𝑗 − 𝑓𝑖(𝑥𝑖𝑗𝑙))  are zero, which contradicts our model. for this approach is 

zero, which contradicts our model, [17].  

 So the appropriate way to introduce this punishment is through coarseness, which is commonly measured  

𝜆1 ∫ [𝛽𝑙
(𝑣)(𝑥)]

2
𝑑𝑥

1

0
, so that differentiable for the time (v=2),  𝜆1  is the tuning parameter, often called the 

smoothing parameter, which variates with the change of coefficient functions. 

We can rewrite the objective function of penalized regression spline given the rth-order difference penalty 

as a matrix equation :  

𝜑(𝛽) =
1

2
‖𝑌 − 𝐵𝛽‖2

2 +
1

2
𝜆1𝛽𝑖

𝑇𝛬𝛽𝑖                                                                                                                (5) 

where  ‖ . ‖2
2 is an L2  norm, 𝛬 = 𝑑𝑖𝑎𝑔(𝛬𝑟  , 𝛬𝑟  , … , 𝛬𝑟), is penalty matrix with size (𝑝 × 𝑝), and   𝛬𝑟 = 𝐴𝐶

−1𝐴′  
, 𝐴 = [𝑎𝑙𝑠] is a matrix has (p×(p-r))  and Gr  can be written as: 

𝛬𝑟 =

[
 
 
 
 
 
1 0 0 0 … 0 0 0
ℎ0 2(ℎ0 + ℎ1) ℎ1 0 … 0 0 0
0 ℎ1 2(ℎ1 + ℎ2) ℎ2 … 0 0 0
⋮ ⋮ ⋮ ⋮ … 0 ⋮ ⋮
0 0 0 0 … ℎ𝑛−2 2(ℎ𝑛−2 + ℎ𝑛−1) ℎ𝑛−1
0 0 0 0 … 0 0 1 ]

 
 
 
 
 

𝑝×𝑝

 

By minimizing Equation (5), we are obtaining the penalized B-spline coefficient estimator  as follows: 

�̂� = arg min
𝛽∈𝛿𝛽

𝜑(𝛽) = (𝐵′𝐵 + 𝜆1𝛬𝑟)
−1𝐵′𝑌                                                                                                  (6) 

Where 𝛿𝛽 = {𝛽: 𝛽 ∈ ℝ𝑛𝑝} is the B-spline coefficients subspace ,which corresponding to the group partition. 

 

2.4 Clustering the Subjects  

We assumed that  each subject has a unique unknown smoothing function and is denoted by 𝑓𝑖(𝑥) ∈ 𝐶
𝑟(𝜒),   

if the subjects share the same smoothing function form if they are the same group that is 𝑓𝑖 = 𝑓𝑗 if the subject i 

and j are from the same cluster group. 

Let 𝜗 = {𝜗1, 𝜗2, … , 𝜗𝑤} ,where 𝑊 ≤ 𝑛 is the number of distance groups , then we can define the 

nonparametric function subspace  𝛿𝜗
𝑓
 corresponding to the group partition [49]: 

𝛿𝜗
𝑓
= {𝑓: 𝑓𝑖 = 𝑓(𝑤), 𝑓𝑖 ∈ 𝐶

𝑞(𝜒), for any 𝑖 ∈ 𝜗𝑤 , 1 ≤ 𝑤 ≤ 𝑊 } 

and the subspace of the B-spline coefficients corresponding to the group partition as : 

𝛿𝜗
𝛽
= {𝛽: 𝛽𝑖 = 𝛽(𝑤), 𝛽𝑖 ∈ 𝑅

𝑞(𝑋), for any 𝑖 ∈ 𝜗𝑤 , 1 ≤ 𝑤 ≤ 𝑊 } 

To estimate B-spline coefficients simultaneously and perform clustering into subgroups, we use the B-spline 

approach [43]. This involves applying a penalty to the differences between their B-spline coefficients to 

encourage subjects to be in the same group which leads to the following objective function as follow: 

ℒ(𝛽) = 𝜑(𝛽) + ∑ 𝜌(𝛽𝑖 − 𝛽𝑗 , 𝜆2)

∇

𝑖,𝑗∈∇

 ,                                                                                                                       (7) 

Where  𝜌(. , 𝜆2) is a penalty function with  a tuning parameter λ2  to determine the number of subgroups.  

and ∇  is the index set  containing  a total number of  possible pair |∇| =
𝑛(𝑛−1)

2
 of {𝑑 = (𝑖, 𝑗): 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛}. 

the value of  𝛾 is the tuning parameter, it provides the least value of unbiasedness and more concavity. 

We will use a Cubic Spline Penalty (CSP) which is proposed by [36] as a penalty concave function for 

penalizing a cubic smoothing B-spline , the CSP form as follow: 



IJMSCS  ISSN: 2704-1077 eISSN 2704-1069  

 

5 

𝜌𝛾,𝜆2
𝑐𝑠𝑝

=  𝜌(𝛽𝑖 − 𝛽𝑗 , 𝜆2) =  𝛾𝜆2 ∫
(𝑥−2𝛾𝜆2)

2

4

‖𝛽𝑖−𝛽𝑗‖2
0

𝑑𝑥,    
 

where ∈ [0,+∞) , and γ≥1 is a parameter that controls the unbiasedness of the penalty function which gives a 

continuous and scattering property. To achieve non-parametric coefficient estimations and subgroup subjects, 

we attempt to minimize Equation (7). However, we encountered challenges while optimizing the objective 

function L(β) directly, and thus we transform it into the following constrained problem: 

min𝜑(𝛽) + ∑ 𝜌(𝛽𝑖 − 𝛽𝑗 , 𝜆2)

∇

𝑖,𝑗∈∇

 

Which is equivalent  to 

min𝜑(𝛽) +∑𝜌𝜆2(𝐷𝛽)𝑑

∇

𝑑

      

Where is Dβ=(β1-β2, β1-β3, …, βn-1-βn)T  , D ∈ ℝ𝑛(𝑛−1)/2×𝑝 is transformation matrix of pairwise differences 

[45], [34]. 

To solve Equation (9), we use the Alternative Direction Method Of Multipliers (ADMM)  algorithm [32], 

which is a variant of the Augmented Lagrangian Multipliers (ALM) method.  

So, we can rewrite the equation as follows:   

min𝜑(𝛽) +∑𝜌𝜆2([|𝑧𝑑|])

∇

𝑑

                                                                                                                                 (8) 

 Subject to 𝐷𝛽 = 𝑧 

The scaled version of (ALM) of (8)  is given by  

ℒ(𝛽, 𝑧, 𝜆2) = min𝜑(𝛽) +∑𝜌𝜆2(|𝑧𝑑|)

∇

𝑑

 +
𝜃

2
‖𝐷𝛽 − 𝑧𝑠 + 𝑢‖2

2 +
𝜃

2
‖𝑢‖2

2 

Where 𝑢 = 𝜆2 𝜃⁄   

We update the estimation of  β, z, λ, at the (s+1)th iteration step as follow: 

𝛽𝑠+1 = argmin
𝛽
ℒ(𝛽, 𝑧𝑠, 𝜆2

𝑠)                                          (9)                                                                                                                 

𝑧𝑠+1 = argmin
𝑧
ℒ(𝛽𝑠+1, 𝑧, 𝜆2

𝑠)                                      (10) 

𝜆2
𝑠+1 = 𝜆2

𝑠 + 𝐷𝛽𝑠+1 − 𝑧𝑠+1                                          (11) 

First, the solution of equation (10) for β has a closed-form solution as follows: 

𝛽𝑠+1 = (𝐵𝑇𝐵 + 𝜆1𝐺𝑟 + 𝜃𝐷
𝑇𝐷)−1(𝐵𝑇𝑌 + 𝜃𝐷𝑇(𝑧𝑠 − 𝑢𝑠))                                                                        (12) 

In order to update z -equation (8)-  we use the soft threshold operations of the penalty function Ѕ𝛾,𝜆2(𝑧)
𝐶𝑆𝑃  to 

approximate the CSP as follows [36]: 

Ѕ𝛾,𝜆2(𝑧)
𝐶𝑆𝑃 = {

0,  |𝑧| ≤ 𝜆2

𝑠𝑖𝑔𝑛(𝑧)2 ((𝛾 − 𝛾2)𝜆2 + 𝛾√𝜆2(|𝑧| − 2𝛾𝜆2 + 𝛾
2𝜆2)) , 𝜆2 < |𝑧| ≤ 𝛾𝜆2

𝑧, |𝑧| > 𝜆2

 

 and   

𝑧𝑠+1 = Ѕ𝛾,𝜆2
𝐶𝑆𝑃 (𝐷𝛽𝑠+1 +

𝜆2
𝑠

𝜃
)                                                                                                                                    (13) 

Then  

𝑧𝑑
𝑠+1 =

{
 

 
‖𝑧𝑑

𝑠+1‖2 𝑖𝑓‖𝑧𝑑
𝑠+1‖2 ≥ 𝛾𝜆2

(𝛾 − 𝛾2)𝜆2 + 𝛾𝜃𝑢√(
1

𝜃𝑢
−
𝛾(2 − 𝛾)

‖𝑧𝑑
𝑠+1‖2

)  . 𝑧 𝑖𝑓‖𝑧𝑑
𝑠+1‖2 < 𝛾𝜆2

                                                   (14) 

Then we substitute the equations (12) and (14) in (11) to get values 𝜆2
𝑠+1

 ( the number of clusters) . 
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Now, we can summaries the ADMM algorithm to solve  equating (9) as follows: 

ADMM algorithm  

Intialize λ0=0 and z0=0 , 𝜃 𝑎𝑛𝑑 𝛾 >
1

𝜃
  are fixed. 

Step1: update  

𝛽𝑠+1 = (𝐵𝑇𝐵 + 𝜆1𝐺𝑟 + 𝜃𝐷
𝑇𝐷)−1(𝐵𝑇𝑌 + 𝜃𝐷𝑇(𝑧𝑠 − 𝑢𝑠)) 

Step2: for all d=1, 2, 3, …,|∇| , update 

 

𝑧𝑑
𝑠+1 =

{
 

 
‖𝑧𝑑

𝑠+1‖2 𝑖𝑓‖𝑧𝑑
𝑠+1‖2 ≥ 𝛾𝜆2

(𝛾 − 𝛾2)𝜆2 + 𝛾𝜃𝑢√(
1

𝜃𝑢
−

𝛾(2−𝛾)

‖𝑧𝑑
𝑠+1‖

2

)  . 𝑧 𝑖𝑓‖𝑧𝑑
𝑠+1‖2 < 𝛾𝜆2

                     

Where 𝑧𝑠+1 = Ѕ𝛾,𝜆2
𝐶𝑆𝑃 (𝐷𝛽𝑠+1 +

𝜆2
𝑠

𝜃
) 

And  𝜆2
𝑠+1 = 𝜆2

𝑠 + 𝐷𝛽𝑠+1 − 𝑧𝑠+1 

Step3: iterate step 1-2 until stopping criteria are met. 

 

 

2.5 Choose the tuning parameter 

 There are several tuning parameter selection methods, including the Generalized Cross-Validation (GCV) 

method, the Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC) [40]. 

 These methods seek to find a balance between the goodness of fit and the model's complexity. We will use a 

two-step technique suggested by to select the tuning parameter λ1 which controls the smoothness of B-spline 

approximation and λ2 which controls the number of clusters selected, and this way has been selected 1 by 

minimizing [48]: 

𝐵𝐼𝐶λ1 =∑{𝑙𝑜𝑔 (
𝑅𝐸𝐸𝑖
𝑛𝑖

) +
1

𝑛𝑖
log(𝑛𝑖) 𝑑𝑓𝑖}                                                                                                                        (15)

𝑛

𝑖=1

 

given λ2 =0 , where dfi  for each longitudinal profile, and then we select the last one by minimizing : 

𝐵𝐼𝐶λ2 =  𝑙𝑜𝑔 (
𝑅𝐸𝐸

𝑛
) +

1

𝑛𝑖
log(𝑛)  𝑑𝑓, 𝑤ℎ𝑒𝑟𝑒 𝑑𝑓 =

𝑊

𝑛

̂
∑𝑑𝑓𝑖

𝑛

𝑖=1

                                                                                               (16) 

2.6 Data Generation  

We have conducted simulation experiments using the CSP penalty functions of the nonparametric cubic 

B-spline model to cluster with the penalty method under study. Two numbers of subjects were used n={60, 

100}. Each of them was repeated 100 iterations to obtain robust and reliable results. 

The explanatory variables were created based on three common models that have been relied upon in 

many studies and research [26], [48], [37], [39]: 

 f(1)(x) = cos(2πx),      f(2)(x) =sin(2πx),    f(3)(x) =2(1 -2 exp(-6x)),  

each subject i in a subgroup has the same reputation, 𝑥𝑖𝑗 where j=1, 2, …,10 equally spaced times points 

in the interval [0, 1]. The longitudinal data have the autocorrelation problem in the subject itself, but it is 

independent between subjects. We generated the random error εij is independently and identically distributed 

according to a normal distribution with mean 0 and variance 𝜎2, where 𝜎~(0,0.4). The continuous response 

yij for subject i at time point j is calculated using the corresponding functional pattern f(C)(xij), where C=1, 2, 3 

represents the subgroup, i.e. 𝑦𝑖𝑗 = 𝑓(𝑐)(𝑥𝑖𝑗) + 𝜀𝑖𝑗.   

To determine of the number of knots for each subject by choosing the minimum of ni/4 [9], [10], where ni 

is the number of observations for subject i , i.e. ni=10, then the number of knots will be k=3  for all subjects. 

Additionally, we use a B-spline with an order of 4. Figure (6) shows the curve of one the subject of data [0,1] 

vs. The number of coefficient =7. 

When the clustering by CSP was performed, in case n = 60, we evaluated the optimal tuning parameters, 

λ1 = 0.002 and λ2 = 0.5, by equations (15) and (16), respectively, and we set the values of θ = 1.5 and fixed γ 

= 1 to ensure the convexity of our objective function. Then the number of clustering are three, which contain 

{18, 16, and 26} elements. 

the package "dendextend" used to plot the hierarchical cluster the of the topic groups, which is used for 

analysis. It is shown in Figure (1): 
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Figure 1: the distribution of 60 subjects using cubic B-spline, having 3 clusters 

Figure (2) shows the Nonparametric Pairwise Grouping NPG for the cubic B-spline function when the 

sample size is 60. 

 

Figure 2: shows The clusters for 60 subjects, 3 clusters by the nonparametric pairwise grouping for the 

cubic B-spline function, the x-axis representing the repeating (time) and the y-axis are the function’s 

curve y. 

 

When clustering utilizing NPG with a sample size of 100 subjects, the, the number of clusters after the 

two tuning parameters λ1 = 0.747 and λ2 = 0.048 were chosen using equations (15) and (16) after θ =1.25 was 

fixed and γ=1, the result was: 3 clusters. These contain {36, 32, 32} elements, respectively. The Figure (3) 
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shows the 3 clusters as follows:

 
Figure (3): 3 clusters using CSP , when n=100 where cluster1 has 36 elements, cluster2 has 32, and 

cluster3 has 32 elements 

 

2.7 Compare Results 

By performing clustering in each of n = 60, 100 subjects using the k-means algorithm for clustering 

longitudinal data, the number of clusters k = 3 was chosen and compared with the results of penal clustering 

using CSP, by calculating the MSE, as shown in Table (3) follows: 

Table (3): The comparison between K-means and NPG cubic spline using CSP 

Number of subjects 𝑀𝑆𝐸𝐶𝑆𝑃 𝑀𝑆𝐸𝐾−𝑚𝑒𝑎𝑛𝑠 

n=60 0.0162353 0.4789956 

n=100 0.6933968 0.8467655 

Reviewing the results, we find that the NPG method is generally better than the k-means method and that 

the use of clustering using CSP has outperformed all of the other methods that were studied. This indicates an 

improvement in the work of nonparametric clustering in the Cubic B-spline model for longitudinal data. 

2.8 Data Collection: 

This study was applied to the data of kidney failure patients at the Ibn-Sina Teaching Hospital for 

dialysis, in Nineveh Governorate, for the year 2023, and for 65 patients, where medical examinations were 

taken on a regular and monthly basis, as the study period was from January until August of this year. 

The tests collected are tests for the levels of: blood hemoglobin, white blood cells, creatinine, urea, 

protein, albumin, and blood glucose, taking into account age and gender. Through a special medical equation, 

the filtration rate or function of the kidneys’ glomeruli is checked for each patient, which determines the 

condition of the patient’s kidneys, whether he suffers from kidney failure and therefore undergoes dialysis or 

not. 

In light of the mentioned above, the following longitudinal data were examined: 

n=65 subjects (number of patients), p = 7 replications (months), 

yij = 65 × 7  i.e. 455 observations (Tests related to the functioning of the glomerulus)  

 

2.8.1 Normality Test  

Before starting the process of statistical analysis of real data, it is necessary to test whether these data 

follow a normal distribution or not. The data were tested using the Kolmogrov-Smirnov test, where the 

hypotheses were tested: 



IJMSCS  ISSN: 2704-1077 eISSN 2704-1069  

 

9 

H0: The data follows a normal distribution. 

H1: The data doesn't follow a normal distribution. 

The following table (4) shows the result of the test: 

Table (4): The result of Kolmogrov-Smirnov normality test 

Statistic N p-value 

5.564 65 0.000 

The p-value, as we see, is 0.000, which is less than α = 0.05, so H0 will be rejected, which means the 

data doesn't follow a normal distribution. 

2.8.2 Data analysis 

In this section, we analyzed kidney failure data, where the model was estimated using a non-parametric 

cubic B-spline model using equation (7), and penalized clustering was used in non-parametric pairwise 

clustering using CSP equation 

Through clustered the data using the CSP penalty function, it was grouped into two groups (clusters), 

where the number of knots = 2, and the two tuning parameters were chosen, λ1= 0.7 and λ2 = 0.8, and we 

fixed θ = 1. 5 and γ=1. The Figure (4) shows the two clusters of the data as follows: 

 
Figure (4): shows 2 clusters using NPG by CSP, cluster 1  has 33 elements, and cluster 2 has 32 

elements. 

 

2.8.3 Result Interpretation 

From what was stated in the above analysis, we find that CSP functions participate in grouping the data 

into two clusters. The first cluster consists of 33 elements, while the second cluster consists of 32 elements, 

but by choosing special tuning parameters , The clustering is based on glomerular filtration rates, which in 

turn affect the functioning of the human kidney.  

By projecting the elements of the clusters onto the original data, we find that the first cluster, consisting 

of 33 elements, was caused by diabetes, heredity, kidney atrophy, or an external symptom. As for the second 

cluster, the cause was high blood pressure, and this is an indication of the seriousness of this cause, which 

constitutes 49% of kidney failure. These reasons led to a defect in the glomerular filtration function of the 

kidneys. If the glomerular filtration rate is between (15 - 29) mg/min/ml3, this indicates the presence of a 

deficiency in kidney function. The person may suffer from kidney failure and need dialysis twice a week, and 

the patient may need Increase the number of washing times to three if the rate is less than that. 
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3. Conclusions 

By implementing simulation experiments and the results presented on the experimental side, as well as 

implementing a real experiment on a set of balanced longitudinal data for examinations of patients with 

kidney failure and presenting its results on the applied side, the researcher concluded the following: 

1. The results of nonparametric pairwise grouping (NPG) showed its ability to cluster using the cubic spline 

model using CSP penalty functions in clustering, we find that: 

 When conducting the simulation experiment n = 60, we find that the number of clusters was 36, 32 and 

32 elements, with the appropriate tuning parameters being chosen using the developed BIC standard.  In 

the case of the simulation experiment when n = 100, we find that the three clusters consisted of as : 36, 

32, and 32. 

2. By making a comparison between the NPG method of clustering and the k-means method, we find that 

the former is highly efficient in clustering when using the cubic B-spline smoothing model, as the NPG 

method works to group profiles of longitudinal data by penalizing the pairwise distances of cubic B-spline 

coefficient vectors, it also works on finding estimates of the model parameters at the same time, by 

choosing λ1, which in turn controls the smoothness of the cubic B-spline approximate function, and λ2, 

which controls the number of clusters chosen. 

3. In conclusion, the method of penal clustering of longitudinal data subjects using the NPG method of the 

cubic spline smoothing model and using the penal penalty function CSP is an improvement to the 

clustering process. 

4. After applying the cubic spline smoothing model method to the longitudinal data of examinations of 

patients with renal failure, targeting the glomerular filtration rate, it was found that patients suffering from 

renal failure are divided into two groups: the first are patients who suffer from glomerular renal failure 

resulting from high blood pressure, which in turn leads to a failure in the functioning of the glomeruli, as 

the glomerular filtration rate ranges between 19-25 mg/min/ml3, and for this reason dialysis is performed 

ptwice a week. As for the second group, they were patients suffering from various diseases such as blood 

sugar, genetic factors, or the causes combined together, causing a decrease in the glomerular filtration rate 

less than the mentioned rate, and therefore it is necessary to resort to dialysis three times a week. 
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