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ABSTRACT: Agriculture, an essential bedrock of human survival, continually grapples with the menace of plant 

diseases, culminating in substantial yield reductions. While conventional detection techniques remain widespread, they 

often entail laborious efforts and are susceptible to inaccuracies, underscoring the pressing need for more efficient, scalable, 

and immediate solutions. Our research explores the transformative capabilities of Deep Learning (DL) models, primarily 

focusing on Convolutional Neural Networks (CNNs) and MobileNet architectures in the early and precise identification of 

plant ailments. We augmented our exploration by incorporating eXplainable Artificial Intelligence (XAI) through 

GradCAM, which elucidated the decision-making process of these models, providing a visual interpretation of disease 

indicators in plant images. Through rigorous testing, our CNN model yielded an accuracy of 89%, a precision and recall of 

96%, and an F1-score of 96%. Conversely, the MobileNet design showcased an accuracy of 96% but recorded slightly 

lesser precision, recall, and F1-scores of 90%, 89%, and 89%, respectively. Such results amplify the transformative role of 

DL in redefining plant disease detection methodologies, presenting a formidable counterpart to conventional techniques 

and ushering in an era of heightened agricultural security. 

Keywords: Agriculture, Plant diseases, Automated disease detection, Deep Learning (DL), Convolutional 

Neural Networks (CNN), MobileNet. 

 

1. INTRODUCTION 

Agriculture, a cornerstone of human civilization, is critical in sustaining life across the globe, 

providing nourishment to billions [1]. Its origins are as ancient as society, weaving a complex tapestry that 

binds human survival to the land. The immense significance of agriculture is highlighted in regions like India, 

where farming is not only an economic activity but a way of life for the vast majority of the population [2]. 

From small subsistence farms to large commercial agricultural establishments, the cultivation of crops is central 

to human existence. Yet, this vital industry faces challenges as ancient as the practice: diseases caused by 

bacteria, fungi, viruses, and other microorganisms [3, 4]. These invisible enemies constantly threaten the very 

essence of agriculture, undermining food security and sustainability. Globally, plants are fundamental to food 

provision. However, they are susceptible to diseases due to various environmental factors, leading to notable 

production deficits. Though prevalent, Traditional manual detection methods are labor-intensive and prone to 

errors, making them less reliable for early disease identification and containment [5]. Addressing these diseases 

promptly can significantly bolster yields, potentially enhancing productivity by over 60% [6]. In this context, 

Convolutional Neural Networks (CNNs) have emerged as a formidable tool, especially adept at deciphering 

intricate patterns in large datasets, such as images, offering a promising alternative for disease detection [7]. 

These diseases can wreak havoc on crops, leading to catastrophic effects on both local and global scales. The 

Irish famine of 1840 illustrates the historical consequences of plant disease, where the blight of potatoes led to 

the loss of life and mass immigration, changing the demographic landscape [8]. Such tragedies are stark 

reminders of the potential devastation that unchecked plant diseases can unleash. Even today, the threat persists 

with staggering financial implications, such as more than 220 billion in losses worldwide [9]. Diseases like 

cassava mosaic and cassava brown streak in sub-Saharan Africa have effects that ripple across economies, 

affecting livelihoods, trade, and entire agricultural ecosystems [10]. Traditional methods of detection and 

control, whether relying on human expertise or chemical interventions, face significant challenges [11, 12]. 

The process of identifying specific symptoms in various plant parts requires specialized knowledge, labor, and 

time. Often, this can be slow and ineffective, especially in remote or resource-poor regions. The extensive use 

of chemical control methods has further led to environmental pollution and the development of pathogen 

resistance [13, 14]. This complexity is only magnified by the varied species and manifestations of diseases 

[15], making a one-size-fits-all approach inadequate and impractical. The urgency for early detection cannot 

be overstated, especially considering the necessity for timely intervention to mitigate the significant threats to 

food availability, quality, and accessibility [16, 17]. As the global population continues to grow, so does the 

demand for food. Traditional methods often fall short in scalability and efficiency, and the development of 
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novel, technology-driven approaches has become paramount. New paradigms are needed to bridge the gap 

between detection and action to ensure that the world’s food supply remains resilient and robust. Deep Learning 

(DL), a branch of artificial intelligence, has emerged as a promising solution [18,19]. Leveraging advanced 

techniques like convolutional neural networks (CNNs), DL models can analyze high-resolution images to 

detect even the most subtle signs of disease [20–23]. This technology has the potential to revolutionize disease 

detection, transforming a process that once required extensive human intervention into one that can be 

automated and scaled. Whether providing immediate support to regions lacking in agronomic infrastructure or 

integrating autonomous vehicles in large-scale agriculture, the possibilities are vast and groundbreaking [24, 

25]. However, challenges remain. Existing models often specialize in particular diseases or species, hindering 

their broad application [26]. The call for robust, adaptable models has led to innovations like transfer learning, 

which aims to make disease detection tools more efficient and universally applicable [27]. As the field 

continues to evolve, ongoing research and collaboration among scientists, agronomists, and technologists are 

essential. The convergence of traditional agricultural wisdom with cutting-edge technology opens the door to 

an exciting future where the promise of sustainable, resilient, and abundant agriculture may finally be realized. 

Artificial intelligence, with a specific emphasis on Deep Learning (DL), has ushered in revolutionary advances 

in plant disease detection in recent times [28, 29]. Due to their ability to manage large and intricate images, DL 

models are aptly suited for analyzing high-resolution visuals [30]. The advent of Graphical Processing Units 

(GPUs) and innovative embedded processors has catalyzed the proliferation of DL applications, paving the 

way for the practical implementation of sophisticated techniques like convolutional neural networks (CNNs) 

[31]. Notably, these CNN models exhibit prowess in identifying nuanced symptoms, which conventional image 

processing techniques often overlook [32–34]. The subsequent sections of this study are organized as follows: 

Section 2 offers a deep dive into contemporary research related to our study. Section 3 outlines the foundational 

knowledge of the classifiers utilized. Our proposed methodology is detailed in Section 4. Section 5 is earmarked 

for a discourse on our research findings. We conclude in Section 6, where we encapsulate the essence of our 

research and propose potential directions for subsequent investigations. 

 

Chen et al.’s 2020 [35] paper delves into the profound effects of plant diseases (PDs) on the food chain. 

The authors advocate for the use of deep learning (DL) in the automated detection and diagnosis of PDs, 

emphasizing the transfer learning (TL) capabilities of pre-trained Convolutional Neural Networks (CNNs). The 

method displayed notable results by leveraging VGGNet, initially trained on ImageNet, in conjunction with the 

Inception module. It attained a validation accuracy of 91.83% on a public dataset and an average accuracy of 

92.00% when predicting rice plant image classifications, even in scenarios with intricate backgrounds. Sunil et 

al.’s 2022 [36] publication delves into the challenges of catering to an expanding population and the repercussions 

of plant diseases (PDs) on crop yields. They put forth an economical approach for early PD detection by analyzing 

plant leaf images using a combination of deep learning models, notably AlexNet, ResNet50, and VGG16. When 

tested across various plant leaf image datasets, this method demonstrated outstanding accuracy, achieving 100% 

for binary datasets and a close 99.53% for multi-class datasets. These findings validate the effectiveness of their 

proposed method in accurately identifying PDs. In their 2020 study, Gayathri et al. [37] presented a deep learning 

method tailored for the real-time detection of the primary five apple leaf diseases using enhanced Convolutional 

Neural Networks (CNNs). This method utilized the GoogLeNet Inception framework and incorporated Rainbow 

concatenation. Additionally, they developed a novel apple leaf disease dataset (ALDD) by leveraging data 

augmentation and image annotation methodologies. Their innovative INAR-SSD model, trained on a 

comprehensive set of 26,377 images of diseased apple leaves, secured a notable detection accuracy of 78.80% 

mAP on the ALDD dataset and boasted a swift detection rate of 23.13 FPS. These outcomes underscore the 

efficacy of the INAR-SSD model in promptly and accurately diagnosing apple leaf diseases, surpassing the 

performance benchmarks set by prior methods. Jiang et al. (2019) [38] introduced a deep learning approach for 

real-time detection of the five primary types of apple leaf diseases using advanced convolutional neural networks 

(CNNs). They employed the GoogLeNet Inception architecture combined with Rainbow concatenation. 

Furthermore, they curated a new dataset for apple leaf diseases (ALDD) through data augmentation and image 

annotation techniques. Their INAR-SSD model, trained on 26,377 images of diseased apple leaves, achieved a 

detection accuracy of 78.80% mAP on the ALDD dataset, with an impressive detection speed of 23.13 FPS. This 

suggests that the INAR-SSD model stands out as an efficient tool for early apple leaf disease detection, offering 

improved accuracy and speed compared to previous methods. In their work, [39] unveiled a groundbreaking 

method for identifying plant diseases through leaf image categorization using deep convolutional networks. 

Utilizing the Caffe Deep Learning framework, their model demonstrated remarkable accuracy, with precision 

levels varying between 91% and 98% for the identification of 13 distinct plant diseases. The paper elaborates 

extensively on the employed methodology, shedding light on the intricate training steps essential for effectively 

deploying the disease recognition system. In their research, [40] undertook a comparative analysis of transfer 

learning situations using CNN architectures such as VGG-16 and VGG-19. They juxtaposed these with their 
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proposed CNN structures tailored for olive plant disease identification. The study utilized a dataset of 3,400 olive 

leaf images, and by integrating a data augmentation technique, they expanded this dataset. Notably, the model’s 

accuracy (ACC) experienced an uplift, surging from around 88% to close to 95% post-data augmentation. This 

research put forth an innovative method for plant disease identification, utilizing leaf image classification in 

conjunction with deep convolutional networks [41]. The model was developed and trained using the Caffe Deep 

Learning (DL) architecture. Demonstrating remarkable efficacy, it attained high precision levels ranging between 

91% and 98% in accurately recognizing 13 distinct plant disease types. 

 

 

2. Background  

 

2.1.  Convolution Neural Network 

 

Artificial Neural Networks (ANNs) are computational models inspired by the human brain’s capacity 

for analysis and information processing [42]. Like the human brain, an ANN is characterized by a network of 

interconnected nodes or "neurons" forming a directed graph. These networks excel at recognizing intricate 

patterns and models that might be too nuanced for either humans or traditional computational techniques. When 

trained effectively, an ANN functions as a domain-specific expert, capable of predicting outcomes for new 

data and addressing hypothetical scenarios, making it a tool apt for "what-if" analyses [43]. There are diverse 

categories of neural networks, such as Recurrent Neural Networks (RNN), Multilayer Perceptrons (MLP), and 

Convolutional Neural Networks (CNN), to name a few. While MLPs, regular neural networks, were initially 

employed for image classification, they soon proved to be computationally demanding and parameter-heavy 

with the increasing resolution of images. CNNs were introduced to counteract these limitations. Unlike 

traditional networks, CNNs possess neurons structured in three dimensions - width, height, and depth, making 

them tailored for image data [44]. Their inherent design, optimized for understanding the 3D spatial hierarchy 

of images, has solidified CNNs as the go-to choice for image-related tasks. A standard CNN structure 

predominantly comprises three key layers: the Convolutional layer, the Pooling layer, and the Fully Connected 

layer. 

 

2.2.  Transfert Learning 

 

Transfer learning (TL) is an ML strategy where knowledge from one task is leveraged to improve 

performance on a related, subsequent task. This technique adapts a model pre-trained on a particular problem 

to tackle a different but associated challenge. As highlighted by Torrey and Shavlik (2010) [45], this pre-trained 

model can be rooted in deep learning or any other machine learning framework. The core principle of TL is 

the portability of knowledge. Insights and feature patterns extracted from one context can provide a head start 

when approaching a new problem, often reducing the computational cost and time to train. This efficiency 

makes TL especially popular in fields like computer vision (CV) and natural language processing (NLP), where 

large, adaptable pre-trained models are prevalent. Beyond these, TL also finds utility in diverse applications 

such as recommendation engines and auditory signal processing. 

 

2.3.  MobileNet 

 

MobileNet, a CNN architecture, emerged from Google in 2017, targeting efficient image processing 

on mobile and embedded platforms [46]. By leveraging depthwise separable convolutions, the computational 

expense gets significantly reduced. MobileNet has two primary versions: MobileNet V1, with 28 convolutional 

layers, and V2, boasting 53 layers. Both have been pre-trained on expansive datasets like ImageNet. In transfer 

learning (TL), these models can be tailored to new tasks by updating the final classification layer and training 

on specific datasets for new objectives. MobileNet excels in numerous computer vision (CV) tasks, including 

object detection, image segmentation, and facial recognition, demonstrating computational efficiency and 

fewer parameter requirements than many deep neural networks (DNN) structures. 

 

3. METHOD  

 

In the methodology framework for our investigation, the initial step centers around dataset acquisition. 

Here, pertinent data is meticulously gathered, laying the groundwork for our analytical pursuits. Subsequent to 

this, data preprocessing techniques come into play, enhancing data quality and preparing it for intricate 

analyses. As the prepared data stands poised for exploration, we segue into the modeling phase. At this juncture, 

we deploy two distinct neural network designs: the well-established Convolutional Neural Network (CNN) and 

the streamlined MobileNet architecture. Integrating eXplainable Artificial Intelligence (XAI) into our 
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approach, we also incorporate GradCAM, offering a layer of interpretability. This facilitates a visual 

representation of how these models discern patterns and make decisions, further enriching our understanding. 

The juxtaposition of these two architectures ensures a multifaceted perspective, shedding light on their 

individual strengths, nuances, and performance metrics, especially in relation to our dataset. The outcomes 

from these models undergo rigorous scrutiny, wherein their results are dissected, insights extracted, and their 

overall efficacy in addressing the research objectives is meticulously assessed. 

 

 

 

 
 

Figure 1. The methodology pipeline. 

 

 

3.1.  Dataset 

 

This study employs a rich dataset consisting of nearly 87,000 RGB leaf images of crops. These images 

span 38 distinct classes, encompassing both healthy and afflicted specimens. For effective model development 

and assessment, the data is apportioned into training and validation subsets, with an 80/20 split, preserving the 

inherent directory hierarchy. An exclusive directory with 33 images is also constituted solely for prediction 

tasks. Notably, this dataset can be accessed on Kaggle, presenting an open resource for enthusiasts delving into 

plant disease identification and categorization. 

 

3.2.  Pre-processing 

 

In this study, the preprocessing stages are instrumental in setting the data up for phases like model 

training and assessment. The data selection phase involves choosing a specific subset of labels, emphasizing 

20 unique classes from each directory for deeper scrutiny. Such a choice streamlines the study’s focus while 

ensuring a balanced representation. Following this, images are resized to a consistent dimension of 224 x 224 

pixels, a step that’s indispensable for ensuring they fit the input constraints of many DL models. Finally, each 
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image undergoes normalization, dividing pixel values by 255. By doing so, pixel values are scaled between 0 

and 1, a measure that standardizes the dataset, priming it for efficient deep-learning model processing. 

 

3.3.  Modeling 

 

3.3.1. CNN classifier 

 

For the initial classification approach in this investigation, a CNN is constructed utilizing the 

TensorFlow platform. This CNN design commences with a 2D convolutional layer, which is subsequently 

complemented by a max pooling layer to condense spatial dimensions. This sequence is reiterated, integrating 

a dropout layer to counteract overfitting. Once flattened, the data transitions through dense layers. The terminal 

layer adopts the softmax activation mechanism to facilitate multi-class categorization. The inherent adaptability 

of the CNN design permits tailored modifications suited to the distinct classification objective and the dataset 

at hand.  

 

3.3.2. MobileNet classifier 

 

This research employs the MobileNetV2 framework, which builds upon the foundational MobileNet 

architecture [15]. What distinguishes MobileNetV2 is its introduction of linear bottlenecks interspersed 

between layers and the inclusion of shortcut connections spanning these bottlenecks. Like its predecessors, 

MobileNetV2 benefits from pretraining on the ImageNet dataset, granting it robust feature extraction 

capabilities. Adapting it for our specific classification task entails removing the upper layers originally geared 

towards ImageNet classification. The resultant output from the base MobileNetV2 is then channeled through a 

sequence of four Dense layers, all utilizing the ’relu’ activation function, with each layer having progressively 

fewer nodes. To counteract potential overfitting, dropout layers are integrated after each Dense layer. The 

concluding Dense layer, furnished with 20 nodes and a ’softmax’ activation function, is optimized for multi-

class categorization. To materialize this structure, we employed the Keras API from Tensor-Flow, configuring 

it to accept input images of dimensions (224, 224, 3) and produce a probability distribution spanning the 20 

classes. 

 

3.4.  Explaining AI with Grad-CAM Techniques 

 

In this study, we employ the sophisticated Grad-CAM technique, also known as Gradient-Weighted 

Class Activation Mapping [47]. This method offers in-depth insights by providing explanations corresponding 

to each input. Specifically, it yields an intuitive visualization that indicates the significance of individual pixels 

when assessed by trained deep-learning algorithms. Grad-CAM stands out as a notable tool in the realm of 

Explainable Artificial Intelligence (XAI), gaining widespread recognition and application in various computer 

vision challenges. Given that our research primarily revolves around image-based data from three distinct 

experiments, we chose the dependable Grad-CAM approach as our representative XAI technique. While there 

are various other XAI methodologies available, for the purposes of this study, we solely focus on Grad-CAM 

without delving into comparisons or discussions regarding the differences in their explanatory outcomes. It's 

worth noting that the foundational concepts of Grad-CAM draw inspiration from the class activation map 

(CAM) techniques [48]. An intrinsic characteristic of Grad-CAM is its ability to utilize gradient information 

accumulated during the training phase. This allows for the identification of the relative importance of neurons 

within the model's decision-making framework. In essence, neurons that exhibit larger absolute gradient values 

are deemed more pivotal in influencing the model's conclusions. 

 

4. RESULTS AND DISCUSSION 

 

4.1.  Training parameters 

 

The deep learning models were calibrated using the parameters outlined below (Table 1): 

• Classes: The dataset was segmented into 20 distinct categories, guiding the models in clas- sifying 

diverse data entries. 

• Epochs: Each model was trained over a span of 20 epochs, meaning they iteratively learned from the 

dataset 20 times. 

•  Loss Function: Sparse Categorical Cross Entropy was designated the loss function, a preferred 

choice for multi-class classification tasks. 
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• Optimization Algorithm: ADAM was employed as the optimization strategy, renowned for its 

effectiveness in managing stochastic objectives utilizing first-order gradient data. 

• Batch Size: A batch configuration of 64 was set, processing 64 dataset samples during each iteration 

of model parameter updates. 

• Validation Data: A fifth of the dataset, precisely 20%, was earmarked for validation, enabling real-

time performance assessment throughout the training phase. 

• Image Dimensions: All input images were resized to dimensions of 224 x 224 pixels to maintain 

consistency. The models were poised to achieve optimal performance and learning efficiency by 

adhering to these specific configurations. 

Table 1. Training Configuration for DL Models 

Parameter Value/Description 

Classes 20 distinct categories 

Epochs 20 

Loss Function Sparse Categorical Cross Entropy 

Optimization Algorithm ADAM 

Batch Size 64 

Validation Split 20% of the dataset 

Image Dimensions 224 x 224 pixels 

 

 

4.2.  Results for CNN Classification 

The performance metrics, including Precision (PRE), Recall (REC), and F-Score (F-S), were 

computed for every class involved in the classification. The Grape_Esca_(Black_Measles) class demonstrated 

exemplary performance with a top precision score of 99%, signifying a stellar accuracy in pinpointing positive 

cases. Meanwhile, the Orange_Haunglongbing_(Citrus_greening) class achieved an outstanding recall score 

of 100%, ensuring thorough recognition of all positive instances. The balanced metric, F-Score, was highest 

for Grape_Esca_(Black_Measles) at 98%, indicating a harmonious blend of precision and recall. In contrast, 

the Tomato_Early_blight class lagged with the lowest precision at 62%, suggesting potential misclassifications. 

The Tomato_Late_blight class had the lowest recall score of 75%, which implies some misses in detecting true 

positive cases. Tomato_Early_blight also fell behind its F-Score by 71%, pointing to a compromised balance 

between precision and recall. 

 

4.3.  MobileNet Results 

 

The evaluation results reveal the classification task's highest and lowest PRE, REC, and F-S values. 

The class with the highest PRE, REC, and F-S is Grape_Esca_(Black_Measles), achieving perfect scores of 

100% for all three metrics. This indicates the accurate identification of positive instances for this class. 

Conversely, Raspberry_healthy also demonstrates excellent performance with PRE, REC, and F-S values of 

100%. On the other hand, Tomato_Early_blight exhibits the lowest PRE, REC, and F-S values of 88%, 74%, 

and 80%, respectively. These lower scores suggest some false positives and negatives in the classification 

results for this class. The classification model demonstrates high performance with an ACC of 96%, and the 

macro and weighted averages of PRE, REC, and F-S are 96%, indicating the model’s proficiency in accurately 

predicting most classes. 

 

4.4.  Visual Interpretation of Disease Detection 

 

GradCAM is designed to offer clarity in class discrimination by elucidating the areas of focus or 

concern for each layer of the network during its processing and decision-making phases. This granular insight 

is pivotal in understanding not only what the model sees but also the importance it attaches to various segments 

of the input. Figure 2 vividly illustrates this concept by showcasing the heatmaps generated using the 

GradCAM method. In these heatmaps, varying shades of color, ranging from red to blue, represent different 

levels of importance or weights as determined by the model. More specifically, the darker shades, whether red 

or blue, pinpoint the regions in the image that the network deems as carrying significant information. Such 

regions are the ones that influence the model's decision most strongly. In the context of our study, which 

revolves around disease detection in plants, these highlighted areas essentially suggest the potential regions of 

the plant that manifest symptoms of a disease. Consequently, by juxtaposing the original images with their 
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respective GradCAM heatmaps, Figure 2 provides a visual guide, enabling researchers, agronomists, and 

readers to appreciate the regions the models classify as indicative of disease presence. This offers a transparent 

lens through which one can understand and trust the model's predictions, paving the way for more informed 

decisions in real-world agricultural applications. 

 

 
 

Figure 2. Comparative Analysis of Original Plant Images and Corresponding GradCAM Heatmaps 

Highlighting Disease Indicators. 

 

4.5.  Comparison 

 

Several distinctions emerge in comparing the performance of the CNN and MobileNet classifiers. 

The CNN classifier demonstrates strong proficiency in certain classes, like 

Grape_Esca_(Black_Measles), which achieves the highest Precision (PRE) value of 99% and an F-Score (F-

S) of 98%. This performance indicates a balanced blend of precision and recall for this class. However, there 

are evident challenges with Tomato_Early_blight, which shows a significantly lower PRE of 62% and F-S of 

71%. On the other hand, MobileNet boasts impressive results, especially for the Grape_Esca_(Black_Measles) 

and Raspberry_healthy classes, both achieving perfect scores of 100% across PRE, Recall (REC), and F-S 

metrics. Nonetheless, even MobileNet stumbles with Tomato_Early_blight, albeit with slightly better scores 

than CNN, as indicated by its 88% PRE, 74% REC, and 80% F-S. While both models exhibit high levels of 

accuracy, MobileNet appears to have a more consistent performance, as evidenced by its average accuracy of 

96% across classes. 

 



              ISSN: 2704-1077 eISSN 2704-1069 

International Journal of Mathematics, Statistics, and Computer Science 

82 

 
Figure 3. CNN and MobileNet results. 

 

 

5. CONCLUSION (10 PT) 

The imperative of prompt and precise plant disease detection holds heightened relevance in our 

contemporary era, marked by intensifying calls for food security and ecological sustainability. In our 

exploration, we harnessed the prowess of DL, specifically the CNN and MobileNet architectures, to tackle this 

perennial agricultural dilemma. Our findings shed revealing light on the potential of these models. The CNNs 

exhibited a commendable performance, achieving an accuracy of 89%, complemented by a precision and recall 

of 96% and an F1-score of 96%. In comparison, the MobileNet architecture, while demonstrating a superior 

accuracy of 96%, manifested marginally reduced precision, recall, and F1-score values, clocking in at 90%, 

89%, and 89%, respectively. Augmenting our investigation was the incorporation of XAI using GradCAM, 

which added a layer of interpretability to our models, offering visual insights into how these networks discern 

disease indicators in plant images. Such advancements echo the transformative promise that DL models hold 

for revolutionizing plant disease detection and proactive management. While our research offers a promising 

window into this burgeoning domain, the path forward beckons with avenues for further innovation and 

broadening of scope. Here are some prospective avenues for future research: 

• Developing a mobile or web application using the trained models could enable farmers and 

agricultural experts to detect diseases in real-time, ensuring timely intervention. 

• With the proliferation of smart farming tools and sensors, integrating our DL models with Internet of 

Things (IoT) devices could pave the way for fully automated disease detection systems on farms. 
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