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ABSTRACT: Recently, the introduction of high-dimensional systems with a larger Lyapunov exponent is very difficult 

and more complex. The paper introduces a new four-dimensional hyperchaotic system with a larger Lyapunov exponent 

compared with 20 works available in literature. Th proposed system will be derived from the Lorenz-like system via a state 

feedback control approach and consist of eight  terms only. This system lacks equilibrium points but can generate hidden 

attractors. Two positive Lyapunov exponents (LE) indicating hyperchaotic behavior have been identified. The 

mathematical properties of this dissipative hyperchaotic system are both theoretically and numerically presented, 

encompassing Lyapunov exponents, Lyapunov dimension (Kaplan-Yorke dimension), Multistability, and Hybrid 

projective synchronization (HPS). Various dynamic behavior are observed  such as hyperchaotic, chaotic, chaotic 2-tours, 

and periodic behaviors. The paper provides proof of the main results through theoretical analysis and numerical simulations 

conducted in MATLAB V2021.  
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1. INTRODUCTION  

In recent decades, there has been growing fascination with chaotic and hyperchaotic systems featuring 

higher-dimensional attractors. These novel chaotic systems have rapidly found applications in various scientific 

domains such as physics, including areas like laser dynamics[1], electrical circuits[2],[3], and synchronization. 

Additionally, chaos theory has been utilized in both scientific and technical fields, spanning robotics[4], neural 

networks [5], chemical processes[6], fuzzy logic [7], encryption [8],[9], and ecology [10]. This widespread 

application underscores the substantial interest in the study of hyperchaotic dynamics. The hidden attractor has 

recently become a source of inspiration for research in nonlinear science. This is due to its crucial significance 

in both theoretical aspects and practical engineering applications, as evidenced by a range of studies  [11], [12], 

[13], [14]. 

Kuznetsov and colleagues initially proposed the concept of hidden attractors in 2010, but it gained 

significant recognition in 2011 through the work of Leonov and others involving Chua's circuit[15]. Hidden 

attractors in dynamical systems are categorized into five types without equilibria [16], Curve equilibria[17], 

Curves plane [18], line of equilibria [19] and stable equilibria points [20] as illustrated in Fig. 1. 

 

 

 

 

 

 

 

 

 

Figure 1. Classification of hidden attractors 

 

Table 1 lists a compilation of prior research on high-dimensional (4D) dissipative 

chaotic/hyperchaotic systems, with their number of positive Lyapunov exponents, the number of terms, the 

maximal Lyapunov exponent (MLE), and the types of attractors. A comparative analysis between the proposed 

system and other different (14) 4D systems from the literature reveals that the proposed system that has fewer 

terms with the fulfillment of the condition (𝑛 − 2) + 𝑣𝑒 𝐿𝐸𝑠. Additionally, it boasts a higher largest Lyapunov 

exponent (MLE=3.0743). Therefore, the system is distinguished  by its  eight terms  with hyperchaotic attractors, 

showcasing the maximum Lyapunov exponent (MLE). 

 

 

Hidden attractors 

Stable Equilibria  Curve equilibria 

 

No Equilibria  Curves plane  line of  Equilibria 
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Table 1. Categorization of most 4D dynamical systems. 

No. 
Behavior of 

System 

+𝒗𝒆 

𝑳𝑬𝒔 

No. 

Terms 

maximal Lyapunov 

exponent MLE 
attractor types Refs. 

1 Periodic 𝑛 − 4 10 −0.0006 Self-excited 2020,  [20]  

2 Hyperchaotic 𝑛 − 2 14 0.0179 Self-excited 2019,  [21] 

3 Hyperchaotic 𝑛 − 2 12 0.5516 Self-excited 2021, [22] 

4 Hyperchaotic 𝑛 − 2 11 0.03443 Self-excited 2012, [23] 

5 Hyperchaotic 𝑛 − 2 10 0.8367 Hidden 2021, [24] 

6 Chaotic 𝑛 − 3 10 0.0220 Hidden 2020, [20]  

7 Hyperchaotic 𝑛 − 2 9 0.8700 Hidden 2012, [25] 

8 Hyperchaotic 𝑛 − 2 10 0.2661 Self-excited 2016, [26] 

9 Chaotic 𝑛 − 3 8 0.0360 Hidden 2017, [27] 

10 Chaotic 𝑛 − 3 7 0.1888 Hidden 2020, [28] 

11 Hyperchaotic 𝑛 − 2 9 0.7796 Hidden 2022, [29] 

12 Chaotic 𝑛 − 3 8 0.1658 Hidden 2021, [30] 

13 Hyperchaotic 𝑛 − 2 9 0.2018 Multiple 2022, [31] 

14 Chaotic 𝑛 − 3 7 1.0714 Hidden 2018, [32] 

15 Chaotic 𝑛 − 3 9 0.0555 Hidden 2017, [33] 

16 Chaotic 2-torus 𝑛 − 3 8 0.0568 Hidden 2018, [34] 

17 Chaotic  𝑛 − 3 8 0.11941 Hidden 2018, [35]  

18 Chaotic  𝑛 − 3 9 0.5888 Self-excited 2021, [36] 

19 Hyperchaotic 𝑛 − 2 11 1.0986 Hidden 2022, [37] 

20 Chaotic 𝑛 − 3 8 𝑁/𝑉 Self-excited 2022, [38] 

21 Hyperchaotic 𝒏 − 𝟐 8 𝟑. 𝟎𝟕𝟒𝟑 Hidden This work 

 
 

The main contributions of this research can be summarized in the following points: 

 

• The proposed has larger Lyapunov exponent compared with 20 works available, 

•  This system without equilibria points, so its belong to hidden attractors. 

• The system is rich in dynamic features  such as hyperchaotic, chaotic, chaotic 2-tours, and periodic 

behaviors. 

• Hybrid projective synchronization to the system is implemented.  

 

2. THE PROPOSED SYSTEM 

In 2019, Cang et al. [39] introduced a six-term 3D Lorenz-like system was developed from the 3D 

renowned Lorenz system [40] which described as: 

{  

𝑥̇1 = 𝑏𝑥2 − 𝑎𝑥1     
𝑥̇2 = −𝑥1𝑥3 − 𝑐𝑥2
𝑥̇3 = 𝑥1𝑥2 − 𝑘        

                                                                                                                         (1)  

where 𝑎, 𝑏 and 𝑐 are positive constants, 𝑥1, 𝑥2, 𝑥3 are variable states. This system exhibits chaotic behavior 

with one positive exponent 𝐿𝐸𝑖=(0.103, 0, −0.653), under the parameters 𝑎 = 10, 𝑏 = 10, 𝑐 = 100, 𝑘 = 11.2, 

with initial conditions (𝐼𝐶𝑠) = (−0.91, 1.94, 0.86) and the corresponding Lyapunov dimension is 𝐷𝐿 =

2.1577. The equilibria points 𝐸1(+√
𝑏𝑘

𝑎
, +√

𝑎𝑘

𝑏
, −

𝑎𝑐

𝑏
) and 𝐸2(−√

𝑏𝑘

𝑎
, −√

𝑎𝑘

𝑏
, −

𝑎𝑐

𝑏
), indicate that system (1) is 

of the self-excited and hidden attractors type and is of a dissipative nature.  

Based on feedback control strategy, a new 4D hyperchaotic system is presented which depicted as: 
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{  

𝑥̇1 = 𝑏𝑥2 − 𝑎𝑥1                 
𝑥̇2 = −𝑥1𝑥3 − 𝑐𝑥2 − 𝑑𝑥4
𝑥̇3 = 𝑥1𝑥2  − 𝑘                   
𝑥̇4 = 𝑥1                                

                                                                                                              (2)  

where 𝑑, 𝑘 ≠ 0 are control parameters. 

To find the equilibrium points for system (2), assume (𝑥̇1 = ⋯ = 𝑥̇4 = 0), so we get from the fourth equation:  

𝑥1 = 0. Substituting this value into the third equation, we find that 𝑘 = 0. This contradicts the hypothesis, so 

this system is classified as a hidden system. 

 

The two parameters 𝑎 and 𝑐 are important in classifying the nature of the  system (2) as either conservative or 

dissipative, depending on the Trace of the matrix, as follows: 
 

𝑡𝑟 =∑
𝜕𝑥̇𝑖
𝜕𝑥𝑖

4

𝑖=1

= −𝑎 − 𝑐 

 

• If 𝑎 = −𝑐,  then system (2) is conservative. 

• If 𝑎 > −𝑐,  then system (2) is dissipative. 

• If 𝑎 < −𝑐,  then system (2) is unbounded. 

2.1.  Exponents and dimension Lyapunov 

Different dynamical behavior are observed such as chaotic 2-torus, periodic, chaotic, and hyperchaotic which 

identified via the sign of the 𝐿𝐸 as illustration in Table 2 and Fig. 2. Based upon the Lyapunov exponents, the 

dynamical behaviors of the system (2) may be divided into the following categories, as shown in Table 3.  

Table 2. Lyapunov Exponents with parameters  𝑎 = 𝑏 = 10, 𝑐 = 0.3, 𝑘 = 100, and different 𝑑, with IC (4). 

Fig.4 Parameters 
Lyapunov Exponents (𝐿𝐸1, 𝐿𝐸2, 𝐿𝐸3 , 𝐿𝐸4)  

Sign of 𝐿𝐸𝑠 Behavior 

Fig.4a 𝑑 = 0.3 (2.0133, 0.0013,−𝟎. 𝟎𝟎𝟎𝟒,−12.3087)   (+,+,0, −) Hyperchaotic 

Fig.4b 𝑑 = 0.0063 (2.0330, 𝟎. 𝟎𝟎𝟎𝟐, −0.0016, −12.3257)  (+,0, −,−) Chaotic 

Fig.4c 𝑑 = 0.0683 (2.0190, −𝟎. 𝟎𝟎𝟎𝟖, −𝟎. 𝟎𝟎𝟎𝟏,−12.3128)  (+,0,0, −) Chaotic 2-torus 

Fig.4d 𝑑 = 100.5 (𝟎. 𝟎𝟎𝟎𝟑,−0.0014, −0.0392,−10.2599)  (0,−,−,−) 
Periodic 

 

Table 3. Behaviors of a 4D dynamical system have the different LE sign. 

𝐿𝐸1 𝐿𝐸2 𝐿𝐸3 𝐿𝐸4 Type of Attractors 
+ + 0 − Hyperchaotic 
+ 0 0 − Chaotic (2-tours) 

+ 0 − − Chaotic 

0 0 0 − Quasi-periodic (3-torus) 

0 0 − − Quasi-periodic (2-tours) 

0 − − − Periodic (limit cycles) 

− − − − Solution approach fixed points 
 

 



              ISSN: 2704-1077 eISSN 2704-1069 

International Journal of Mathematics, Statistics, and Computer Science 

66 

 

 

 
Figure 2. Attractors system (2) under various parameters (a) Hyperchaotic, (b) Chaotic, (c) Chaotic 2-tours, 

(d) Periodic 

 

By using the Wolf algorithm [41] and under the parameters (3) and initial conditions (4), the new system (2) 

has two positive 𝐿𝐸, as depicted in Fig. 3, therefore referred to as having "hyperchaotic attractors" as seen in 

Fig. 4. 

     

{
 
 

 
 

 

𝑎 = 10  
𝑏 = 100
𝑐 = 10  
𝑑 = 0.27
𝑘 = 100

                                                                                                                                       (3) 

𝑋(0) = (0.91, 1.94, 0.86, 0.3)                                                                                                              (4)   

             { 

𝐿𝐸1 = 3.0743    
𝐿𝐸2 = 0.0068     
𝐿𝐸3 = −𝟎. 𝟎𝟎𝟎𝟓
𝐿𝐸4 = −23.0379

,    ∑ 𝐿𝐸𝑖
4
𝑖=1 = −19.9573         

It is clear that    ∑ 𝐿𝐸𝑖
4
𝑖=1 = −19.9573 ≅ 𝑡𝑟 = −20, this indicates the validity of the theoretical results with 

the numerical solutions of the Wolf algorithm. In addition  the system (2) has nature dissipative. Determine 

the complexity of a new system's attractor by determining the Lyapunov dimension (𝐷𝐿), which is described 

as  [42]: 

𝐷𝐿 = 𝐽 +
1

|𝐿𝐸𝐽+1|
∑𝐿𝐸𝑖

𝐽

𝑖=1

 

  𝐷𝐿 = 3 +
3.0743 + 0.0068 − 0.0005

23.0379
= 3.1337 
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Figure 3. The system's two positive Lyapunov exponents (2) with typical parameters (3), and IC (4). 

 

Figure 4. The phase portrait for the new system 

 

2.2. Multistability 

    Multistability, a feature of complex systems such as systems with feedback loops or non-linear 

systems, is a fundamental idea in engineering, physics, economics, and biology. It is critical for understanding 

phenomena including phase transitions, decision-making processes,  pattern formation, and cell differentiation. 

Understanding and studying multistability within dynamical systems is critical because it provides deep 

insights into the system's behavior and assists in the creation of control techniques aimed at steering the system 

towards certain attractors or states. Non-linear dynamical systems' multistability indicates that they can have 

several solutions within the same parameters. Table 4 shows two attractors with the same parameters and under 

different initial conditions, whereas Fig. 5 exhibits the corresponding attractors (solutions).  

 

Table 4. Multistability with different Parameters and Initial Conditions 

Parameters Figure Initial Conditions Color 
 

𝑎 = 𝑐 = 10 

𝑏 = 100 

𝑑 = 0.27 

𝑘 = 100 

Fig.5a 
(3, 1.9, 0.86, 0.3) Red 

(−1,− 0.4, 0.4, 0.5) Blue 

(1,0.4, 0.4, 0.5) Green 

Fig.5b (0.01, 0.5, 0.8, 0.1) Red 

(−0.01, −0.5, −0.8, −1) Blue 

Fig.5c (−40, 0.7, 0.7, 0.7) Red 

(40, 0.7, 0.7, 0.7) Magenta 

𝑎 = 𝑐 = 10 

𝑏 = 10 

𝑑 = 0.2 

𝑘 = 10 

 

Fig.5d 

(−10, −7, 7, 7) Blue 

(10, 7, 7, 7) Magenta 
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Figure 5. The coexistence attractor of a system (2) in (a): 𝑥3 − 𝑥1 − 𝑥2 space, (b): 𝑥1 − 𝑥2 − 𝑥3space, (c): 

𝑥1 − 𝑥2 plane,  (d): 𝑥2 − 𝑥3 plane. 

 

2.3. Compare results 

By comparing  between the new system and the original system through Table 5, can be seen that the new 

system (2) is more effective than the system (1) in terms of both the Lyapunov exponents, behavior of system, 

and the convergence between Lyapunov's exponential sum (∑ 𝐿𝐸𝑖)
𝑖
𝑖=1  and the Trace of the matrix  (𝑡𝑟).  

Table 5. Comparison results between system (1) and the proposed system. 

Details 3D System (1) New 4D system (2) 

Max. 𝐿𝐸 0.103 𝟑. 𝟎𝟕𝟒𝟑  

Lyapunov dimension 2.1577 3.1337 

No. +𝑣𝑒 𝐿𝐸  -------- (𝒏 − 𝟐) 

Behavior of System Chaotic (+,0,-) 

• Hyperchaotic (+,+,0,-) 

• Chaotic(+,0,-,-) 

• Chaotic 2-torus (+,0,0,-)  

• Periodic (0,-,-,-)  

 

 

3. HYBRID PROJECTIVE SYNCHRONIZATION (HPS) 

           Hybrid synchronization (HS) is synchronization that combines complete synchronization (CS) with anti-

synchronization (AS) and is a special case of hybrid projective synchronization (HPS). In this section, the 

problem of hybrid projective synchronization (HPS) are implemented  on the proposed system. The HPS 

consists of two nonlinear dynamical systems: the drive system and the response system. The response system 

has control over the drive system. The mathematical formulations for the drive and response systems are given 

as equations (5)(from system (2)) and (6), respectively [43]. 
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[

𝑥̇1
𝑥̇2
𝑥̇3
𝑥̇4

] = [

−𝑎

   
0
0
   1

 𝑏
−𝑐
0
0

0
0
0
0

0
−𝑑
0
0

] [

𝑥1
𝑥2
𝑥3
𝑥4

] + [

0
−1
0
0

  

0
0
1
0

  

0
0
0
0

0
0
−𝑘
0

] [

𝑥1𝑥3
𝑥1𝑥2
1
0

]                                                                (5) 

 

[

𝑦̇1
𝑦̇2
𝑦̇3
𝑦̇4

] = [

−𝑎

   
0
0
   1

 

𝑏
−𝑐
0
0

0
0
0
0

0
−𝑑
0
0

] [

𝑦1
𝑦2
𝑦3
𝑦4

] + [

0
−1
0
0

  

0
0
1
0

  

0
0
0
0

0
0
−𝑘
0

] [

𝑦1𝑦3
𝑦1𝑦2
1
0

] + [

𝑢1
𝑢2
𝑢3
𝑢4

]                                                    (6) 

 

Furthermore, the error dynamical system is described as : 
 

  𝑒𝑖 = 𝑦𝑖 − 𝑃 𝑥𝑖                                                                                                                                        (7) 

 

𝑃 is n-order diagonal matrix, when 𝑖 = 1, 2, 3, 4, 𝑃 = 𝑑𝑖𝑎𝑔(𝑝1, 𝑝2, 𝑝3, 𝑝4), the concept of a scaling matrix "𝑃" 

its associated scaling factors "𝑝1, … , 𝑝𝑛". The objective is to design a controller "𝑈" that guides the response 

system to asymptotically match the drive system. This alignment leads to synchronization, where the error 

between the two systems converges to zero over time. 

 

 𝑙𝑖𝑚
𝑡→∞

‖𝑒𝑖(𝑡)‖ = lim
𝑡→∞

‖𝑦𝑖 − 𝑃 𝑥𝑖‖ = 0                                                                                        (8) 

 

The significance of the scaling matrix 𝑃 lies in its role in determining the synchronization phenomenon, like if 

𝑃 is a matrix that is constant and: 

• If 𝑝1 ≠ 𝑝2 ≠ ⋯ ≠ 𝑝𝑛, then is called a hybrid projective synchronization (HPS), 

• If 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑛,  and (∀𝑝𝑖 = −1) and (∀𝑝𝑖 = 1), then is called a complete synchronization (CS)  

and Anti-synchronization (AS), respectively. 

• If ∀𝑝𝑖 = ±1, then is called a Hybrid synchronization (HS). 

3.1. Controllers for scaling factor 𝒑𝟏 = 𝟒, 𝒑𝟐 = 𝟐, 𝒑𝟑 = 𝟑, 𝒑𝟒 = 𝟏 

If matrix 𝑃 is selected as 𝑃 = 𝑑𝑖𝑎𝑔(4, 2, 3, 1), i.e.: 

 

𝑒 = [

𝑦1
𝑦2
𝑦3
𝑦4

] − [

4
0
0
0

0
2
0
0

0
0
3
0

0
0
0
1

]

⏟        
𝑃

 [

𝑥1
𝑥2
𝑥3
𝑥4

]                                                                                                      (9) 

Adding system (5) to system (6) yields an error system (9): 

 

{  

𝑒̇1 = 𝑏𝑒2 − 𝑎𝑒1 − 2𝑏𝑥2 + 𝑢1                                                                  
𝑒̇2 = −𝑐𝑒2 − 𝑑(𝑒4 − 𝑥4) − 𝑒3(𝑒1 + 4𝑥1) − 𝑥3(3𝑒1 + 10𝑥1) + 𝑢2
𝑒̇3 = 𝑒2(𝑒1 + 4𝑥1) + 𝑥2(2𝑒1 + 5𝑥1) + 2𝑘 + 𝑢3                                 
𝑒̇4 = 𝑒1 + 3𝑥1 + 𝑢4                                                                                    

                                               (10) 

 
 

Theorem 1: A designed non-linear controller as 

 

{  

𝑢1 = −𝑒4 + 𝑥2(2𝑏 − 2𝑒3) + 𝑒2(3𝑥3 − 𝑒3)  
𝑢2 = −𝑏𝑒1 − 𝑑𝑥4 + 10𝑥1𝑥3                            
𝑢3 = −𝑒3 + 𝑒1𝑒2 − 2𝑘 − 5𝑥1𝑥2                     
𝑢4 = −𝑒4 + 𝑑𝑒2 − 3𝑥1                                    

                                                                                    (11) 

Then takes place Hybrid Synchronization between systems (5) and (6). 

 
Proof: Inserting (11) in (10) we have: 

 

{  

𝑒̇1 = −𝑎𝑒1 + 𝑒2(𝑏 + 3𝑥3 − 𝑒3) − 2𝑒3𝑥2 − 𝑒4      
𝑒̇2 = −𝑐𝑒2 − 𝑑𝑒4 − 𝑒3(𝑒1 + 4𝑥1) − 𝑒1(3𝑥3 + 𝑏)
𝑒̇3 = −𝑒3 + 𝑒2(2𝑒1 + 4𝑥1) + 2𝑒1𝑥2                         
𝑒̇4 = −𝑒4 + 𝑒1  + 𝑑𝑒2                                                  

                                                                          (12) 

 

A Lyapunov function is built as: 𝑉(𝑒𝑖) = 𝑒𝑖
𝑇𝑆𝑒𝑖 
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 𝑉(𝑒𝑖) = [𝑒1 𝑒2 𝑒3 𝑒4] [

0.5
0
0
0

0
0.5
0
0

0
0
0.5
0

0
0
0
0.5

]

⏟              
𝑆

 [

𝑒1
𝑒2
𝑒3
𝑒4

]                                                                              (13)                

 

The time derivative of a preceding function 𝑉(𝑒𝑖) is given by: 

 

𝑉̇(𝑒𝑖) = 𝑒1𝑒̇1 + 𝑒2𝑒̇2 + 𝑒3𝑒̇3 + 𝑒4𝑒̇4                                                                                                     (14)  

 

𝑉̇(𝑒𝑖) = −𝑎𝑒1
2 − 𝑐𝑒2

2 − 𝑒3
2 − 𝑒4

2                                                                                                           (15) 

 

As a result, 𝑉̇(𝑒𝑖) is negative definite (where 𝑎 = 𝑐 = 10), so the hybrid synchronization process has been 

achieved theoretically with control system (11). 

3.2. Controllers for scaling factor 𝒑𝟏 = 𝟏, 𝒑𝟐 = −𝟏, 𝒑𝟑 = 𝟏, 𝒑𝟒 = −𝟏 

 

        If matrix 𝑃 is selected as 𝑃 = 𝑑𝑖𝑎𝑔(1,−1, 1, −1), i.e.: 

 

𝑒 = [

𝑦1
𝑦2
𝑦3
𝑦4

] − [

1
0
0
0

0
−1
0
0

0
0
1
0

0
0
0
−1

]

⏟            
𝑃

 [

𝑥1
𝑥2
𝑥3
𝑥4

]                                                                                                   (16) 

Adding system (5) to system (6) yields an error system (16): 

 

{  

𝑒̇1 = −𝑎𝑒1 + 𝑏𝑒2 − 2𝑏𝑥2 + 𝑢1                                         
𝑒̇2 = −𝑐𝑒2 − 𝑑𝑒4 − 𝑒3(𝑒1 + 𝑥1) − 𝑥3(𝑒1 + 2𝑥1) + 𝑢2
𝑒̇3 = 𝑒2(𝑒1 + 𝑥1) − 𝑥2(𝑒1 + 2𝑥1) + 𝑢3                            
𝑒̇4 = 𝑒1 + 𝑢4                                                                           

                                                                (17) 

 

 

Theorem 2: A designed non-linear controller as 
 

{  

𝑢1 = −𝑒4 + 𝑥2(2𝑏 + 𝑒3) + 𝑒2𝑥3  
𝑢2 = −𝑏𝑒1 + 2𝑥1𝑥3 − 𝑒1𝑒3           
𝑢3 = −𝑒3 + 𝑒1𝑒2 + 2𝑥1𝑥2              
𝑢4 = −𝑒4 + 𝑑𝑒2                               

                                                                                                (18) 

Then takes place Hybrid Synchronization between systems (5) and (6). 

 
Proof: Inserting (18) in (17) we have: 

 

{  

𝑒̇1 = −𝑎𝑒1 + 𝑏𝑒2  − 𝑒4 + 𝑥2𝑒3 + 𝑥3𝑒2                 
𝑒̇2 = −𝑐𝑒2 − 𝑑𝑒4 − 𝑒3(2𝑒1 + 𝑥1) − 𝑥3𝑒1 − 𝑏𝑒1
𝑒̇3 = 𝑒2(2𝑒1 + 𝑥1) − 𝑥2𝑒1  − 𝑒3                               
𝑒̇4 = −𝑒4 + 𝑒1  + 𝑑𝑒2                                                 

                                                                           (19) 

 
 

The time derivative (14) of a preceding function 𝑉(𝑒𝑖) is given by: 

 

𝑉̇(𝑒𝑖) = −𝑎𝑒1
2 − 𝑐𝑒2

2 − 𝑒3
2 − 𝑒4

2                                                                                                           (20) 

  

As a result, 𝑉̇(𝑒𝑖) is negative definite, so the hybrid synchronization process has been achieved theoretically  

with control system (18). 

 

3.3. Numerical simulation   

          By applying the fourth-order Runge-Kutta scheme and for using a time step of 0.01 and the initial 

condition of both the drive system and the response system are following (0.3, 0.2, 0.1, 0.2) and 

(−0.1, 0.3, −0.4, 0.1) respectively, the differential equations of the controlled error dynamical system (10) for 

PHS and the controlled error dynamical system (17) for HS is adopted determined throughout simulation using 

MATLAB  R2021.  
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• For the scaling factor 𝑝1 = 4, 𝑝2 = 2, 𝑝3 = 3, 𝑝4 = 1. The HPS for systems (5) and (6) through control 

(11) is shown in Figs. 5 and 6. 

• For the scaling factor 𝑝1 = 1, 𝑝2 = −1, 𝑝3 = 1, 𝑝4 = −1. The HPS for systems (5) and (6) through 

control (18) is shown in Figs. 7 and 8. 

 

 
Figure 2. Hybrid Synchronization with and without error controllers (11). 

 

 

Figure 3. The HPS for the state variables with control (11) at scaling factors 
𝑝1 = 4, 𝑝2 = 2, 𝑝3 = 3, 𝑝4 = 1 
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Figure 4. Hybrid Synchronization with and without error controllers (18). 

 

 

Figure 5. The HS for the state variables with control (18) at scaling factors 𝑝1 = 1, 𝑝2 = −1, 𝑝3 = 1, 𝑝4 =
−1  

 

 

4. CONCLUSION  

The work's main goal was to explore hidden attractors and analyze complex nonlinear dissipative 

hyperchaotic systems. This was achieved by employing a state feedback method involving an eight-term 

system. Notably, the system features a maximal Lyapunov exponent (MLE) of 3.0743, surpassing the 

Lyapunov exponent of the original system. Various characteristics were explored, including the Lyapunov 

dimension, multistability, and hybrid projective synchronization (HPS), which is valuable across science, 

engineering, and technology. The system's potential applications span science, technology, neural networks, 

and robotics, with MATLAB V2021 simulations used to present the key findings.. 
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