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ABSTRACT: In this article, the authors propose a new two-parameter continuous distribution. It is called a new 

mixture distribution because it comes from the unique combination of exponential and gamma distributions (MEGD). 

Some statistical properties of the distribution are derived, such as the moments, moments generating function, reliability 

analysis. Also, the distribution of order statistics is presented, and entropies are derived. The application of the maximum 

likelihood estimation technique to the performance of traditional parameter estimates. Two authentic data sets describing 

cancer patients' survival are used to empirically demonstrate the potential importance and usability of the proposed 

distribution. Comparing the new mixture distribution to some other competing distribution, the analysis's results 

demonstrated that it performed quite well. 

 

Keywords: Mixture Model, Moments, Order Statistics, Maximum Likelihood Estimation, Model Selection 

Technic AIC, BIC. 

 

1. INTRODUCTION  

Medical science is one of the most important applications of statistical analysis. On a great deal of 

occasions, specific statistical considerations are needed for cancer research in order to determine the model 

that best fits the survival data. The statistical distributions have been extensively utilized for analyzing time-

to-event data, also referred to as survival or reliability data, in different areas of applicability, including 

medical science. In recent years, an impressive set of new statistical distributions has been explored by 

statisticians. The necessity of developing an extended class of classical distribution is analysis, biomedicine, 

reliability, insurance, and finance. Recently, many researchers have been working on this area and have 

proposed new methods to develop improved probability distributions with utility. [11] shanker distribution 

proposed as a mixture of exponential (θ) and gamma (2, θ) distribution. [10] the combination of exponential 

(θ), gamma (2, θ) and gamma (4, θ) with respectively mixing proportion 
𝜃3

𝜃3+𝜃2+6
,

𝜃2

𝜃3+𝜃2+6
 𝑎𝑛𝑑 

6

𝜃3+𝜃2+6
 

propose Uma distribution.[15] Akash distribution is atwo component mixture of an exponential distribution 

and gamma distribution with their mixing proportions 
𝜃2

𝜃2+2
 and 

2

𝜃2+2
. [12] Aradhana distribution is a three-

component mixture of an exponential distribution and gamma with mixing proportions 
𝜃2

𝜃2+2𝜃+2
,

2𝜃

𝜃2+2𝜃+2
and 

2

𝜃2+2𝜃+2
. [19] Komal distribution with properties and application in survival analysis. [16] Garima 

distribution and its application model behavioral science data. 

In order to create the new mixed distribution with parameters λ and θ, which we will refer to as mix (λ, θ), 

this study will combine the gamma distribution with parameters λ=3 and θ, gamma (3, θ), and the 

exponential distribution with parameter θ, Exp(θ) with mixing proportions 
𝜆

𝜆+1
𝑎𝑛𝑑 

1

𝜆+1
. 

If random variable X has the probability density function (pdf) 𝑓(𝑥) = ∑ 𝜔𝑖𝑓𝑖(𝑥),
𝑛
𝑖=1  then it is said to have a 

mixture of two distribution 𝑓1(𝑥), … , 𝑓𝑛(𝑥). The missing weight where 0 ≤ 𝑥𝑖 ≤ 1 so that ∑ 𝜔𝑖𝑓𝑖(𝑥)
𝑛
𝑖=1 = 1. 

An exponential distribution random variable X with a parameter 𝜃 > 0 is described by its pdf as 

𝑓(𝑥) = 𝜃𝑒−𝜃𝑥   , 𝑥 > 0, 𝜃 > 0 

Given the gamma distribution with parameters 𝜆 = 3, 𝜃 if the pdf is obtained as  

𝑓(𝑥) =
1

2
𝜃3𝑥2 𝑒−𝜃𝑥   , 𝑥 > 0, 𝜃 > 0 

The present study examines, through an analysis of several cancer data sets, the adaptability of the proposed 

distribution to represent the survival time. A further goal is to use the maximum likelihood method to 

estimate the unknown model parameters.  

The remainder of the work is structured around a newly defined mixture distribution (MGED), its 

special instances, a use-full extension for its pdf and cdf, and some demonstrations of the proposed 
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distribution's features. The distribution parameters' maximum likelihood estimators (MLEs) are found. 

Various simulation studies are conducted to evaluate the MLEs' performance. Lastly, various uses of the 

newly developed mixture distribution MGED fitting datasets are demonstrated in comparision to other well-

known classical distributions. Throughout this research, the statistical programming language R was used for 

all computations. 

 

2. NEW MIXTURE DISTRIBUTION 

They introduce a new mixture probability distribution to the life time model. A mixture of 

exponential and gamma distribution (MEGD)is a well-known distribution and importance in the study of 

growth, lifetime data. A continuous random variable X has a mixture distribution, if its pdf 𝑓(𝑥; 𝜆, 𝜃)and cdf 

𝐹(𝑥; 𝜆, 𝜃) are, given by 

𝑓(𝑥; 𝜆, 𝜃) =
𝜃

𝜆 + 1
(
1

2
𝜆𝜃2𝑥2 + 1) 𝑒−𝜃𝑥        , 𝑥 > 0, 𝜃 > 0, 𝜆 > 0                                                                           (1) 

The function defined in (1) represents a probability distribution function pdf of the new distribution as a 

mixture of exponential and gamma (MEGD)𝑓(𝑥; 𝜆, 𝜃) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 > 0 

∫ 𝑓(𝑥; 𝜆, 𝜃) 𝑑𝑥

∞

0

= ∫   
𝜃

𝜆 + 1
(
1

2
𝜆𝜃2𝑥2 + 1) 𝑒−𝜃𝑥𝑑𝑥

∞

0

 

                              =
𝜃

𝜆 + 1
(
𝜆 + 1

𝜃
) 

                              = 1 

The cumulative distribution function cdf is obtained as 

𝐹(𝑥; 𝜆, 𝜃) = ∫   
𝜃

𝜆 + 1
(
1

2
𝜆𝜃2𝑡2 + 1) 𝑒−𝜃𝑡𝑑𝑡

𝑥

0

 

Then, the cumulative distribution function cdf of the new mixture of exponential and gamma distribution 

(MEGD)are obtained as 

𝐹(𝑥; 𝜆, 𝜃) = 1 − (1 +
𝜆𝜃𝑥

(𝜆 + 1)
(
𝜃𝑥

2
+ 1)) 𝑒−𝜃𝑥          𝑥 > 0, 𝜃 > 0, 𝜆 > 0                                                           (2) 

As a cumulative distribution function, the function satisfies the necessary conditions 

lim
𝑥→0

𝐹(𝑥; 𝜆, 𝜃) = lim
𝑥→0

(1 − (1 +
𝜆𝜃𝑥

(𝜆 + 1)
(
𝜃𝑥

2
+ 1)) 𝑒−𝜃𝑥) 

= 1 − 1 = 0 

lim
𝑥→∞

𝐹(𝑥; 𝜆, 𝜃) = lim
𝑥→∞

(1 − (1 +
𝜆𝜃𝑥

(𝜆 + 1)
(
𝜃𝑥

2
+ 1)) 𝑒−𝜃𝑥) 

= 1 − 0 = 1 

 

3. RELIABILITY ANALYSIS 

This section will provide the reliability function, hazard function, reverse hazard function, cumulative 

hazard function, odds rate, Mills ratio, and mean residual function for the specified new mixture distribution 

(MGED). 

 

3.1 Survival function 

 The survival function of new mixture distribution (MEGD)is obtained as 

𝑆(𝑥) = 1 − 𝐹(𝑥; 𝜆, 𝜃) 

𝑆(𝑥) = (1 +
𝜆𝜃𝑥

(𝜆 + 1)
(
𝜃𝑥

2
+ 1)) 𝑒−𝜃𝑥 

 

3.2 Hazard rate function 

 An important metric for describing life phenomena is the hazard rate function of the new mixture 

distribution (MGED), which is defined by ℎ(𝑥) =
𝑓(𝑥;𝜆,𝜃)

𝟏−𝐹(𝑥;𝜆,𝜃)
. 

ℎ(𝑥) = (
(
1
2
𝜆𝜃2𝑥2 + 1)𝜃

(𝜆 + 1) + 𝜆𝜃𝑥 (
𝜃𝑥
2
+ 1)

) 
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3.3 Revers hazard rate  

 The Revers hazard rate of new mixture distribution (MEGD)is obtained as 

ℎ𝑟(𝑥) =
𝑓(𝑥; 𝜆, 𝜃)

𝐹(𝑥; 𝜆, 𝜃)
 

ℎ𝑟(𝑥) = −(
(
1
2
𝜆𝜃2𝑥2 + 1)

𝜆𝑥 (
𝜃𝑥
2
+ 1)

) 

 

3.4 Cumulative hazard function 

The Cumulative hazard function of new mixture distribution (MEGD)is obtained as 

𝐻(𝑥) = − ln(1 − 𝐹(𝑥; 𝜆, 𝜃)) 

𝐻(𝑥) = − ln((1 +
𝜆𝜃𝑥

(𝜆 + 1)
(
𝜃𝑥

2
+ 1)) 𝑒−𝜃𝑥) 

 

3.5 Odds rate function 

The Odds rate function of new mixture distribution (MEGD)is obtained as 

𝑂(𝑥) =
𝐹(𝑥; 𝜆, 𝜃)

1 − 𝐹(𝑥; 𝜆, 𝜃)
 

𝑂(𝑥) =

(

 
 
1 − (1 +

𝜆𝜃𝑥
(𝜆 + 1)

(
𝜃𝑥
2
+ 1))

(1 +
𝜆𝜃𝑥

(𝜆 + 1)
(
𝜃𝑥
2
+ 1))

)

 
 

 

 

3.6 Mean residual function 

The mean residual function of new mixture distribution (MEGD)is obtained as 

𝑀(𝑥) =
1

𝑆(𝑥)
∫ 𝑡 𝑓(𝑡)𝑑𝑡 − 𝑥
∞

𝑥

 

𝑀(𝑥) =
1

(1 +
𝜆𝜃𝑥

(𝜆 + 1)
(
𝜃𝑥
2
+ 1)) 𝑒−𝜃𝑥

∫ 𝑡 
𝜃

𝜆 + 1
(
1

2
𝜆𝜃2𝑡2 + 1) 𝑒−𝜃𝑡𝑑𝑡 − 𝑥

∞

𝑥

 

Then, the mean residual function can be obtained as 

By letting,  𝑢 = 𝑡3, 𝑑𝑢 = 3𝑡2 𝑑𝑡       𝑎𝑛𝑑     𝑑𝑣 = 𝑒−𝜃𝑡 , 𝑣 = −
𝑒−𝜃𝑡

𝜃
 

Then, solving the integral, we get 

𝑀(𝑥) =

(

 
 (𝜆𝜃𝑥

2 (𝜃𝑥 + 3) + 𝑥(3𝜆 + 1) +
(3𝜆 + 1)

𝜃
)

(𝜆 + 1) (1 +
𝜆𝜃𝑥

(𝜆 + 1)
(
𝜃𝑥
2
+ 1))

)

 
 
− 𝑥 

 

4. STATISTICAL PROPERTIES 

In this section, to derived the structural properties, moments, the moment generating function, 

Characteristics function and rth moment for the new mixture distribution of the random variable is also 

derived. Among the measures examined were the mean, variance, coefficient of variation, skewness, kurtosis, 

and dispersion. 

 

4.1 Moments 

If a random X has the pdf given by equation (1), then the corresponding rth moments is given by 

𝐸(𝑋𝑟) = 𝜇𝑟
′ = ∫ 𝑥𝑟  

∞

0

𝑓(𝑥; 𝜆, 𝜃) 𝑑𝑥 

𝜇𝑟
′ = ∫ 𝑥𝑟  

∞

0

𝜃

𝜆 + 1
(
1

2
𝜆𝜃2𝑥2 + 1) 𝑒−𝜃𝑥 𝑑𝑥 

Solving the integration, using the following gamma function  
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∫ 𝑥𝑧−1𝑒−𝑝𝑥
∞

0

𝑑𝑥 =
Γ(𝑧)

𝑝𝑧
 

𝜇𝑟
′ = (

𝜆Γ(𝑟 + 3)

2𝜃𝑟(𝜆 + 1)
+
Γ(𝑟 + 1)

𝜃𝑟(𝜆 + 1)
)                                                                                                                                   (3) 

Where Γ(. ) Is the gamma function. Subsequently, the mean and variance can be obtained by substituting 𝑟 =
1,2,3,4 in equation (3) 

𝐸(𝑋) = (
3𝜆 + 1

𝜃(𝜆 + 1)
) 

𝐸(𝑋2) = (
2(6𝜆 + 1)

𝜃2(𝜆 + 1)
) 

𝐸(𝑋3) = (
6(10𝜆 + 1)

𝜃3(𝜆 + 1)
) 

𝐸(𝑋4) = (
24(15𝜆 + 1)

𝜃4(𝜆 + 1)
) 

 

Variance = 𝜎2 = 𝐸(𝑋2) − (𝐸(𝑋))
2
 

𝜎2 =
2(𝜆6 + 1)

𝜃2(𝜆 + 1)
− (

3𝜆 + 1

𝜃(𝜆 + 1)
)
2

 

After simplification we get, 

𝜎2 = (
3𝜆2 + 8𝜆 + 1

(𝜃(𝜆 + 1))
2 ) 

𝜎 = (
√3𝜆2 + 8𝜆 + 1

(𝜃(𝜆 + 1))
) 

 

Coefficient of Variation  

𝐶. 𝑉 (
𝜎

𝜇
) =

√3𝜆2 + 8𝜆 + 1

3𝜆 + 1
 

 

Skewness 

𝑆𝑘(𝑋) =
𝐸(𝑋3) − 3𝜇𝐸(𝑋2) + 2𝜇3

𝜎3
  

After simplification we get, 

𝑆𝑘(𝑋) = (
12𝜆2 + 86𝜆 + 14

𝜃3(𝜆 + 1)3
) 

 

Kurtosis 

𝐾𝑢(𝑋) =
𝐸(𝑋4) − 4𝜇𝐸(𝑋3) + 6𝜇2𝐸(𝑋2) − 3𝜇4

𝜎4
 

𝐾𝑢(𝑋) = (
−(576𝜆2 + 1200𝜆 + 24 + 𝜆2𝜃720 + 312𝜆𝜃 + 24𝜃)

24(15𝜆 + 1)(𝜆 + 1)
) 

 

Dispersion 

Dispersion=
𝜎2

𝜇
 

= (
3𝜆2 + 8𝜆 + 1

𝜃(𝜆 + 1)(3𝜆 + 1)
) 

 

4.2 Moment generating function  

If a random variable X has the pdf by (1), then the corresponding rth moments is given by. 

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑥) = ∫ 𝑒𝑡𝑥 𝑓(𝑥; 𝜆, 𝜃)

∞

0

  𝑑𝑥 
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𝑀𝑋(𝑡) =
𝜃

𝜆 + 1
∫ 𝑒𝑡𝑥 (

1

2
𝜆𝜃2𝑥2 + 1) 𝑒−𝜃𝑥

∞

0

  𝑑𝑥 

𝑀𝑋(𝑡) =
𝜃

𝜆 + 1
  (
1

2
𝜆𝜃2∫ 𝑥2𝑒−(𝜃−𝑡)𝑥 𝑑𝑥

∞

0

+∫ 𝑒−(𝜃−𝑡)𝑥 𝑑𝑥

∞

0

) 

Then, the rth moments can be obtained as 

By assuming, 𝑢 = 𝑥2    𝑎𝑛𝑑     𝑑𝑣 = −
𝑒−(𝜃−𝑡)𝑥

(𝜃−𝑡)
 

𝑀𝑋(𝑡) =
𝜃

(𝜆 + 1)(𝜃 − 𝑡)
(

2

(𝜃 − 𝑡)2
+ 1)                                                                                                                      (4) 

 

4.3 Charateristics function 

The characteristics function of a random variable X can be defined with form  

𝜙𝑋(𝑡) = 𝐸(𝑒
𝑖𝑡𝑥) = ∫ 𝑒𝑖𝑡𝑥 𝑓(𝑥; 𝜆, 𝜃)

∞

0

  𝑑𝑥 

𝜙𝑋(𝑡) = 𝑀𝑋(𝑖𝑡) 
the characteristics function of a random variable X whose pdf in equation (1) can be obtained similarly as  

𝜙𝑋(𝑡) =
𝜃

(𝜆 + 1)(𝜃 − 𝑖𝑡)
(

2

(𝜃 − 𝑖𝑡)2
+ 1)                                                                                                                   (5) 

 

5. HORMONIC MEAN 

The Hormonic mean of the new mixture distribution (MEGD) is defined as 

𝐻.𝑀 = ∫
1

𝑥

∞

0

𝑓(𝑥; 𝜆, 𝜃)𝑑𝑥 

𝐻.𝑀 = ∫
1

𝑥

∞

0

 
𝜃

𝜆 + 1
(
1

2
𝜆𝜃2𝑥2 + 1) 𝑒−𝜃𝑥𝑑𝑥 

𝐻.𝑀 =
𝜃

𝜆 + 1
∫

1

𝑥

∞

0

 (
1

2
𝜆𝜃2𝑥2 + 1) 𝑒−𝜃𝑥𝑑𝑥 

Solving the integration, using the following gamma function 

𝐻.𝑀 =
1

(𝜆 + 1)
(
𝜆𝜃

2
− 1) 

 

6. MEAN DEVIATION 

Let X be a random variable from new mixture distribution (MEGD) with mean 𝜇. Then the deviation 

from mean is defined as 

𝐷(𝜇) = 𝐸(|𝑋 − 𝜇|) 

𝐷(𝜇) = ∫ |𝑋 − 𝜇|
∞

0

  𝑓(𝑥; 𝜆, 𝜃)𝑑𝑥 

𝐷(𝜇) = ∫ (𝜇 − 𝑥) 𝑓(𝑥; 𝜆, 𝜃)𝑑𝑥 + ∫ (𝑥 − 𝜇)  𝑓(𝑥; 𝜆, 𝜃)𝑑𝑥
∞

𝜇

𝜇

0

 

𝐷(𝜇) = 𝜇∫  𝑓(𝑥; 𝜆, 𝜃)𝑑𝑥 − ∫ 𝑥  𝑓(𝑥; 𝜆, 𝜃)𝑑𝑥 + ∫ 𝑥  𝑓(𝑥; 𝜆, 𝜃)𝑑𝑥 − ∫ 𝜇  𝑓(𝑥; 𝜆, 𝜃)𝑑𝑥
∞

𝜇

∞

𝜇

𝜇

0

𝜇

0

 

𝐷(𝜇) = 𝜇𝐹(𝜇) − ∫ 𝑥  𝑓(𝑥; 𝜆, 𝜃)𝑑𝑥 −
𝜇

0

𝜇[1 − 𝐹(𝜇)] + ∫ 𝑥  𝑓(𝑥; 𝜆, 𝜃)𝑑𝑥
∞

𝜇

 

𝐷(𝜇) = 2𝜇𝐹(𝜇) − 2∫ 𝑥  𝑓(𝑥; 𝜆, 𝜃)𝑑𝑥
𝜇

0

 

Then, 

∫ 𝑥 𝑓(𝑥; 𝜆, 𝜃) 𝑑𝑥 =
𝜇

0

∫ 𝑥 
𝜃

𝜆 + 1
(
1

2
𝜆𝜃2𝑥2 + 1) 𝑒−𝜃𝑥 𝑑𝑥

𝜇

0

 

Then, the deviation from mean can be obtained as 

By letting, 𝑢 = 𝑥3    𝑎𝑛𝑑     𝑑𝑣 = 𝑒−𝜃𝑥     𝑡ℎ𝑒𝑛   𝑑𝑢 = 3𝑥2𝑑𝑥 

Then, solving the integral to simplifying this, we get 
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𝐷(𝜇) =

{
  
 

  
 2(

3𝜆 + 1

𝜃(𝜆 + 1)
) (1 − (1 +

𝜆𝜃𝜇

(𝜆 + 1)
(
𝜃𝜇

2
+ 1)) 𝑒−𝜃𝜇)

+(
2

𝜆 + 1
((
3𝜆

𝜃
+ 1) (1 −   𝑒 −𝜃𝜇) − 2𝜇 (

𝜆𝜃𝜇

2
(𝜃𝜇 + 3) + (3𝜆 + 1))   𝑒 −𝜃𝜇))

}
  
 

  
 

 

 

7. MEDIAN 

Let X be a random variable from new mixture distribution (MEGD) with median 𝑀. Then the mean 

deviation from median is defined as 

𝐷(𝑀) = 𝐸(|𝑋 −𝑀|) 

𝐷(𝑀) = ∫ |𝑋 −𝑀|
∞

0

 𝑓(𝑥)𝑑𝑥 

𝐷(𝑀) = ∫ (𝑀 − 𝑥)𝑓(𝑥)𝑑𝑥 + ∫ (𝑥 −𝑀)𝑓(𝑥)𝑑𝑥
∞

𝑀

𝑀

0

 

𝐷(𝑀) = 𝑀𝐹(𝑀) − ∫ 𝑥 𝑓(𝑥)𝑑𝑥 −
𝑀

0

𝑀[1 − 𝐹(𝑀)] + ∫ 𝑥 𝑓(𝑥)𝑑𝑥
∞

𝑀

 

𝐷(𝑀) = 𝜇 − 2∫ 𝑥 𝑓(𝑥)𝑑𝑥
𝑀

0

 

Now,  

∫ 𝑥 𝑓(𝑥)𝑑𝑥
𝑀

0

= ∫ 𝑥 
𝜃

𝜆 + 1
(
1

2
𝜆𝜃2𝑥2 + 1) 𝑒−𝜃𝑥 𝑑𝑥

𝑀

0

 

Then, the deviation from median can be obtained as 
Let assuming, 𝑢 = 𝑥3    𝑎𝑛𝑑     𝑑𝑣 = 𝑒−𝜃𝑥     𝑡ℎ𝑒𝑛   𝑑𝑢 = 3𝑥2𝑑𝑥 

Then, solving the integral, we get 

𝐷(𝑀) = {
3𝜆 + 1

𝜃(𝜆 + 1)
− (

2

𝜆 + 1
((
3𝜆

𝜃
+ 1) (1 −   𝑒 −𝜃𝑀) − 2𝑝 (

𝜆𝜃𝑀

2
(𝜃𝑀 + 3) + (3𝜆 + 1)) 𝑒 −𝜃𝑀))} 

 

8. ORDER STATISTICS 

The derived pdf of the 𝑖𝑡ℎ order statistics of the new mixture distribution (MEGD). Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a 

simple random sample from new mixture distribution with cdf and pdf given by (1) and (2), respectively. Let 

𝑋(1:𝑛) ≤ 𝑋(2:𝑛) ≤ ⋯ ≤ 𝑋(𝑛:𝑛) denote the order statistics obtained from this sample. We now given the pdf of 

𝑋𝑟:𝑛, say 𝑓𝑟;𝑛(𝑥) of 𝑋𝑟:𝑛, 𝑖 = 1,2, … , 𝑛. The pdf of the 𝑟𝑡ℎ order statistics 𝑋𝑟:𝑛, 𝑟 = 1, 2, … , 𝑛 is given by 

𝑓𝑋(𝑟)(𝑥) =
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
(𝐹(𝑥))

𝑟−1
(1 − 𝐹(𝑥))

𝑛−𝑟
𝑓(𝑥), 𝑥 > 0                                                                       (6) 

Where 𝐹(. ) and 𝑓(. ) are given by (1) and (2) respectively, 

𝑎𝑛𝑑    𝐶𝑟:𝑛 =
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
 

𝑓𝑟:𝑛 = 𝐶𝑟:𝑛(𝐹(𝑥))
𝑟−1
(1 − 𝐹(𝑥))

𝑛−𝑟
𝑓(𝑥) 

Then, using the following binomial series expansion 

(1 − 𝑧)𝑎 =∑(−1)𝑗 (
𝑎
𝑗) 𝑧

𝑗

∞

𝑗=0

 

𝑓𝑟:𝑛 = 𝐶𝑟:𝑛∑(−1)𝑠 (
𝑛 − 𝑟
𝑠

)

∞

𝑠=0

(𝐹(𝑥))
𝑟+𝑠+1

𝑓(𝑥) 

𝑓𝑟:𝑛 = {𝐶𝑟:𝑛∑(−1)𝑠 (
𝑛 − 𝑟
𝑠

)

∞

𝑠=0

(1 − [1 +
𝜆𝜃𝑥

(𝜆 + 1)
(
𝜃𝑥

2
+ 1)] 𝑒−𝜃𝑥)

𝑟+𝑠+1 𝜃

𝜆 + 1
(
1

2
𝜆𝜃2𝑥2 + 1) 𝑒−𝜃𝑥} 

After simplification we get, 
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𝑓𝑟:𝑛 =

{
 
 

 
 𝐶𝑟:𝑛∑∑∑∑(−1)𝑞+𝑠

∞

𝑡=0

∞

𝑝=0

∞

𝑞=0

∞

𝑠=0

(
𝑛 − 𝑟
𝑠

) (
𝑟 + 𝑠 − 1

𝑞
) (
𝑞
𝑝) (

𝑝
𝑡
) (
𝜃𝑥

2
)
𝑡

(
𝜆𝜃𝑥

(𝜆 + 1)
)
𝑝

𝑒−𝜃(𝑞+1)𝑥

×
𝜃

𝜆 + 1
(
1

2
𝜆𝜃2𝑥2 + 1) }

 
 

 
 

 

First order statistics 

𝑓1:𝑛 = {𝐶1:𝑛∑∑∑∑(−1)𝑞+𝑠
∞

𝑡=0

∞

𝑞=0

∞

𝑝=0

∞

𝑠=0

(
𝑛 − 1
𝑠

) (
𝑠
𝑝) (

𝑝
𝑞) (

𝑞
𝑡
) (
𝜃𝑥

2
)
𝑡

(
𝜆𝜃𝑥

(𝜆 + 1)
)
𝑝

𝑒−𝜃(𝑞+1)𝑥
𝜃

𝜆 + 1
(
1

2
𝜆𝜃2𝑥2 + 1)} 

nth order statistics 

𝑓𝑛:𝑛 = {𝐶𝑛:𝑛∑∑∑(−1)𝑞+𝑠
∞

𝑡=0

∞

𝑝=0

∞

𝑞=0

(
𝑛 + 𝑠 − 1

𝑞
) (
𝑞
𝑝) (

𝑝
𝑡
) (
𝜃𝑥

2
)
𝑡

(
𝜆𝜃𝑥

(𝜆 + 1)
)
𝑝

𝑒−𝜃(𝑞+1)𝑥
𝜃

𝜆 + 1
(
1

2
𝜆𝜃2𝑥2 + 1)} 

 

8.1 Quantial function 

The quantile function of a distribution with cdf, 𝐹(𝑥; 𝜆, 𝜃), is defined by 𝑞 = 𝐹(𝑥𝑞; 𝜆, 𝜃), where 0 <

𝑞 < 1. Thus, the quantile function of new mixture distribution (MEGD) is given by 

1 − 𝑞 = (1 +
𝜆𝜃𝑥𝑞
(𝜆 + 1)

(
𝜃𝑥𝑞
2
+ 1)) 𝑒−𝜃𝑥𝑞 

Figure 8 shows the quantile plot for different values of 𝜃 𝑎𝑛𝑑 𝜆.  

 

9. ENTROPIES 

In this section, derived the Rényi entropy, and Tsallis entropy from the distribution. 

It is well known that entropy and information can be considered measures of uncertainty or the randomness 

of a probability distribution. It is applied in many fields, such as engineering, finance, information theory, 

and biomedicine. The entropy functionals for probability distribution were derived on the basis of a 

variational definition of uncertainty measure. 

 

9.1 R𝐞́nyi entropy 

Entropy is defined as a random variable X is a measure of variation of the uncertainty. It is used in 

many fields, such as engineering, statistical mechanics, finance, information theory, biomedicine, and 

economics. The entropy measure is the Rényi of order which is defined as 

𝑅𝛿 =
1

1 − 𝛿
log∫ [ 𝑓(𝑥; 𝜆, 𝜃)]𝛿

∞

0

 𝑑𝑥                ; 𝛿 > 0, 𝛿 ≠ 1 

𝑅𝛿 =
1

1 − 𝛿
log (

𝜃

𝜆 + 1
)
𝛿

∫ (
1

2
𝜆𝜃2𝑥2 + 1)

𝛿

𝑒−𝛿𝜃𝑥
∞

0

 𝑑𝑥  

Then, the integration, using the following binomial series expansion 

(1 + 𝑥)𝑎 =∑(
𝑎
𝑗) (𝑥)

𝑗

𝑛

𝑗=0

 

Then, the following power series expansion 

𝑎𝑥 =∑
(𝑥 ln 𝑎)𝑘

𝑘!

∞

𝑘=0

 

𝑅𝛿 =
1

1 − 𝛿
log {(

𝜃

𝜆 + 1
)
𝛿

 ∑∑∑(
1

2
)
𝑖∞

𝑘=0

∞

𝑗=0

(
𝛿
𝑖
)
(𝑖 ln 𝜆)𝑗

𝑗!

∞

𝑖=0

(2𝑖 ln 𝜃)𝑘

𝑘!
∫ 𝑥(2𝑖+1)
∞

0

 𝑒−𝛿𝜃𝑥 𝑑𝑥} 

Solving the integration, using the following gamma function 

Γ(𝑧)

𝑎𝑧
= ∫ 𝑥𝑧−1

∞

0

 𝑒−𝑎𝑥 𝑑𝑥 

𝑅𝛿 =
1

1 − 𝛿
log {(

𝜃

𝜆 + 1
)
𝛿

 ∑∑∑(
1

2
)
𝑖∞

𝑘=0

∞

𝑗=0

(
𝛿
𝑖
)
(𝑖 ln 𝜆)𝑗

𝑗!

∞

𝑖=0

(2𝑖 ln 𝜃)𝑘

𝑘!

Γ(2𝑖 + 1)

(𝛿𝜃)2𝑖+1
} 

 

9.2 Tsallis entropy 
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The Boltzmann-Gibbs (B-G) statistical properties initiated by Tsallis have received a great deal of 

attention. This generalization of (B-G) statistics was first proposed by introducing the mathematical 

expression of Tsallis entropy (Tsallis, (1988) for continuous random variables, which is defined as 

𝑇𝛿 =
1

𝛿 − 1
(1 − ∫ [ 𝑓(𝑥; 𝜆, 𝜃)]𝛿

∞

0

 𝑑𝑥)                                      ; 𝛿 > 0, 𝛿 ≠ 1 

𝑇𝛿 =
1

𝛿 − 1
{1 − (∫ (

𝜃

𝜆 + 1
)
𝛿

(  (
1

2
𝜆𝜃2𝑥2 + 1) 𝑒−𝜃𝑥)

𝛿∞

0

 𝑑𝑥)}  

Then, solving the integration to simplifying this, we get 

𝑇𝛿 =
1

𝛿 − 1
{1 − ((

𝜃

𝜆 + 1
)
𝛿

 ∑∑∑(
1

2
)
𝑖∞

𝑘=0

∞

𝑗=0

(
𝛿
𝑖
)
(𝑖 ln 𝜆)𝑗

𝑗!

∞

𝑖=0

(2𝑖 ln 𝜃)𝑘

𝑘!

Γ(2𝑖 + 1)

(𝛿𝜃)2𝑖+1
)} 

 

 

10. STOCHASTIC ORDERING 

Stochastic ordering is an important technique in finance and dependability for assessing the relative 

performance of the models. Let X and Y be two random variables with pdf, cdf, and reliability functions 

𝑓(𝑥), 𝑓(𝑦), 𝐹(𝑥), 𝐹(𝑦). 𝑆(𝑥) = 1 − 𝐹(𝑥)𝑎𝑛𝑑 𝐹(𝑦). 

1- Likelihood ratio order (𝑋 ≤𝐿𝑅  𝑌) if 
𝑓𝑋(𝑥;𝜆,𝜃)

𝑓𝑌(𝑥;𝜆,𝜃)
 decreases in 𝑥 

2- Stochastic order (𝑋 ≤𝑆𝑇  𝑌) if 𝐹𝑋(𝑥; 𝜆, 𝜃) ≥ 𝐹𝑌(𝑥; 𝜆, 𝜃) for all 𝑥 

3- Hazard rate order (𝑋 ≤𝐻𝑅  𝑌) if ℎ𝑋(𝑥; 𝜆, 𝜃) ≥ 𝐹𝑌(𝑥; 𝜆, 𝜃) for all 𝑥 

4- Mean residual life order (𝑋 ≤𝑀𝑅𝐿  𝑌) if 𝑀𝑅𝐿𝑋(𝑋) ≤ 𝑀𝑅𝐿𝑌(𝑋) for all 𝑥 

Prove that the new mixture distribution (MEGD) complies with the ordering with the highest likelihood (the 

likelihood ratio ordering). 

Assume that X and Y are two independent Random variables with probability distribution 

function𝑓𝑥(𝑥; 𝜆, 𝜃)and 𝑓𝑦(𝑥; 𝛼, 𝛽). If 𝜆 < 𝛼 and 𝜃 < 𝛽, then 

Λ =
𝑓𝑥(𝑥; 𝜆, 𝜃)

𝑓𝑦(𝑥; 𝛼, 𝛽)
 

Λ = (

𝜃
𝜆 + 1

(
1
2
𝜆𝜃2𝑥2 + 1) 𝑒−𝜃𝑥

𝛽
𝛼 + 1(

1
2
𝛼𝛽2𝑥2 + 1) 𝑒−𝛽𝑥

) 

Λ = (
𝜃(𝛽 + 1) (

1
2
𝜆𝜃2𝑥2 + 1)

𝛼(𝜆 + 1) (
1
2
𝛼𝛽2𝑥2 + 1)

)𝑒(𝛼−𝜃)𝑥 

Therefore, the log-likelihood function is given by 

log[Λ] = log (
𝜃(𝛽 + 1)

𝛼(𝜆 + 1)
) + log (

1

2
𝜆𝜃2𝑥2 + 1) − log (

1

2
𝛼𝛽2𝑥2 + 1) − (𝛼 − 𝜃)𝑥 

Differentiating with respect to x, we get. 

∂log[Λ]

𝜕𝑥
= (

𝜆𝜃2𝑥

1
2
𝜆𝜃2𝑥2 + 1

)− (
𝛼𝛽2𝑥

1
2
𝛼𝛽2𝑥2 + 1

) + (𝛼 − 𝜃) = 0 

Hence, 
∂log[Λ]

𝜕𝑥
< 0 if 𝜆 < 𝛼 , 𝜃 < 𝛽. 

 

11. BONFERRONI AND LORENZ CURVES 

The Bonferroni and Lorenz curves have been obtained using the new mixture distribution (MEGD) in 

this section. 

The Bonferroni and Lorenz curve is a powerful tool in the analysis of distributions and has applications in 

many fields, such as economies, insurance, income, reliability, and medicine. The Bonferroni and Lorenz 

cures for a 𝑋 be the random variable of a unit and 𝑓(𝑥) be the probability density function of x. 𝑓(𝑥)𝑑𝑥 will 

be represented by the probability that a unit selected at random is defined as 

𝐵(𝑝) =
1

𝑝𝜇
∫ 𝑥 𝑓(𝑥; 𝜆, 𝜃)𝑑𝑥 
𝑞

0

 𝑎𝑛𝑑 

𝐿(𝑝) =
1

𝜇
∫ 𝑥 𝑓(𝑥; 𝜆, 𝜃)𝑑𝑥 
𝑞

0
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Where, 𝑞 = 𝐹−1(𝑝);    𝑞𝜖[0,1] and 

 𝜇 = 𝐸(𝑋) = (
3𝜆 + 1

𝜃(𝜆 + 1)
) 

Hence the Bonferroni and Lorenz curves of our distribution are, given by 

𝐵(𝑝) =
1

𝑝𝜇
∫ 𝑥 

𝜃

𝜆 + 1
(
1

2
𝜆𝜃2𝑥2 + 1) 𝑒−𝜃𝑥 𝑑𝑥 

𝑝

0

 

𝐵(𝑝) =
1

𝑝 (
3𝜆 + 1
𝜃(𝜆 + 1)

)
.
𝜃

𝜆 + 1
(
1

2
𝜆𝜃2∫ 𝑥3𝑒−𝜃𝑥 𝑑𝑥

𝑝

0

+∫ 𝑥 𝑒−𝜃𝑥 𝑑𝑥
𝑝

0

) 

Let assuming,  𝑢 = 𝑥3 ,   𝑑𝑣 = 𝑒−𝜃𝑥 𝑑𝑥,    𝑡ℎ𝑒𝑛   𝑑𝑢 = 3𝑥2 𝑑𝑥,   𝑣 = −
1

𝜃
𝑒−𝜃𝑥 

Then, solving the integration to simplifying this, we get 

𝐵(𝑝) = {
𝜃

𝑝(3𝜆 + 1)
((
3𝜆

𝜃
+ 1) (1 −   𝑒 −𝜃𝑝) − 𝑝 (

𝜆𝜃𝑝

2
(𝜃𝑝 + 3) + (3𝜆 + 1))   𝑒 −𝜃𝑝)} 

𝐿(𝑝) = 𝑝𝐵(𝑝) 

𝐿(𝑝) = {
𝜃

(3𝜆 + 1)
((
3𝜆

𝜃
+ 1) (1 −   𝑒 −𝜃𝑝) − 𝑝(

𝜆𝜃𝑝

2
(𝜃𝑝 + 3) + (3𝜆 + 1))   𝑒 −𝜃𝑝)} 

 

12. LEAST SQUARE AND WEIGHTED LEAST SQUARE ESTIMATIONS 

The third approach for estimating the model parameters is covered in this section. It involves estimating 

the weighted least square (WLSE) and ordinary least square (OLSE). 

  𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛) are the order statistics of a random sample derived from a probability distribution. 

The mean and the variance are defined for the ith order statistic. 

𝐸 (𝐹(𝑥(𝑖); 𝜆, 𝜃)) =
𝑖

𝑛 + 1
   𝑎𝑛𝑑  

𝑣𝑎𝑟 (𝐹(𝑥(𝑖); 𝜆, 𝜃)) =
𝑖(𝑛 − 𝑖 + 1)

(𝑛 + 1)2(𝑛 + 2)
       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑛                                                                           (7) 

Swain et al. (1988) introduced OLS and WLS [4]. By minimizing the function that follows with regard to the 

parameter, they can obtain OLS estimates for the parameters. 

𝑅 =∑(𝐹(𝑥(𝑖); 𝜆, 𝜃) − ℱ(𝑖))
2

𝑛

𝑖=1

                                                                                                                                     (8) 

In the case of the distribution under consideration, the theoretical CDF of the observation 𝑥(𝑖)  is represented 

by 𝐹(𝑥(𝑖); 𝜆, 𝜃), while the empirical CDF, ℱ(𝑖) which is often calculated by ℱ(𝑖) =
𝑖

𝑛+1
 

𝑅 =∑(𝐹(𝑥(𝑖); 𝜆, 𝜃) −
𝑖

𝑛 + 1
)
2𝑛

𝑖=1

                                                                                                                                    (9) 

In substituting its cdf specified in Eq. (2), for ℱ(𝑖) in the previous equation, this function can be produced for 

the new mixture distribution (MEGD) as follows. 

𝑅(𝜆, 𝜃) =∑{(
𝜆𝜃𝑥(𝑖)
(𝜆 + 1)

(
𝜃𝑥(𝑖)

2
+ 1)) 𝑒−𝜃𝑥(𝑖) −

𝑖

𝑛 + 1
}

2

                                                                                       (10)

𝑛

𝑖=1

 

The following equation must be solved in order to find the OLS estimates: minimize in Eq. (10), with respect 

to the parameters. 

𝑆(𝜆, 𝜃)

𝜕𝜃
=∑𝜁𝑖

(1)(𝜆, 𝜃) {(
𝜆𝜃𝑥(𝑖)
(𝜆 + 1)

(
𝜃𝑥(𝑖)

2
+ 1)) 𝑒−𝜃𝑥(𝑖) −

𝑛 + 1 − 𝑖

𝑛 + 1
} = 0             

𝑛

𝑖=1

 

𝑆(𝜆, 𝜃)

𝜕𝜆
=∑𝜁𝑖

(2)(𝜆, 𝜃) {(
𝜆𝜃𝑥(𝑖)
(𝜆 + 1)

(
𝜃𝑥(𝑖)

2
+ 1)) 𝑒−𝜃𝑥(𝑖) −

𝑛 + 1 − 𝑖

𝑛 + 1
} 𝑥(𝑖) = 0   

𝑛

𝑖=1

 

𝜁𝑖
(1)(𝜆, 𝜃) = (

𝑥(𝑖) (𝜃 − 𝜆𝜃 + 𝜆𝜃𝑥(𝑖)(𝜃 − 1))

2(𝜆 + 1)2
)𝑒−𝜃𝑥(𝑖)                                                                                             (11) 

𝜁𝑖
(2)(𝜆, 𝜃) = (

𝑥(𝑖)(𝜃𝑥(𝑖) + 2(𝜆 + 1) − 𝜆𝜃𝑥(𝑖))

2(𝜆 + 1)2
)𝑒−𝜃𝑥(𝑖)                                                                                           (12) 

By minimizing the following with regard to the parameters, we can derive WLS estimates for the parameters. 



              ISSN: 2704-1077 eISSN 2704-1069 

International Journal of Mathematics, Statistics, and Computer Science 

268 

𝑊 =∑𝜔𝑖 (𝐹(𝑥(𝑖); 𝜆, 𝜃) −
𝑖

𝑛 + 1
)
2𝑛

𝑖=1

                 𝜔𝑖 =
(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 + 1 − 𝑖)
                                                               (13) 

After substituting its cdf described in Eq. (2), for 𝐹(𝑥(𝑖); 𝜆, 𝜃) in the preceding equation, this function can be 

produced for the new mixture distribution (MEGD).   

𝑊(𝜆, 𝜃) = (𝑛 + 1)2(𝑛 + 2)∑

((
𝜆𝜃𝑥(𝑖)
(𝜆 + 1)

(
𝜃𝑥(𝑖)
2

+ 1)) 𝑒−𝜃𝑥(𝑖) −
𝑛 + 1 − 𝑖
𝑛 + 1

)

2

𝑖(𝑛 + 1 − 𝑖)

𝑛

𝑖=1

                                             (14) 

The following equation can be solved to obtain the WLS estimates by minimizing in Eq. (14), with respect to 

the parameters. 

𝑊(𝜆, 𝜃)

𝜕𝜃
=∑{(

𝜆𝜃𝑥(𝑖)
(𝜆 + 1)

(
𝜃𝑥(𝑖)

2
+ 1)) 𝑒−𝜃𝑥(𝑖) −

𝑛 + 1 − 𝑖

𝑛 + 1
}

𝑛

𝑖=1

(
𝜆𝜃2𝑥(𝑖)

2

2(𝜆 + 1)
+
𝜆𝜃𝑥(𝑖)
(𝜆 + 1)

) 𝑒−𝜃𝑥(𝑖)

𝑖(𝑛 + 1 − 𝑖)
   = 0 

𝑊(𝜆, 𝜃)

𝜕𝜆
=∑{(

𝜆𝜃𝑥(𝑖)
(𝜆 + 1)

(
𝜃𝑥(𝑖)

2
+ 1)) 𝑒−𝜃𝑥(𝑖) −

𝑛 + 1 − 𝑖

𝑛 + 1
}

𝑛

𝑖=1

𝑥(𝑖)𝑒
−𝜃𝑥(𝑖)

𝑖(𝑛 + 1 − 𝑖)
   = 0 

 

13. MAXIMUM PRODUCT OF SPACING ESTIMATION 

The MPS was developed in 1970 by Chening and Amin [7]. maximize the following function is the 

concept behind this approach. 

𝑃 =
1

𝑛 + 1
∑ log𝐷𝑖

𝑛+1

𝑖=1

                                                                                                                                                       (15) 

Where 𝐷𝑖 = 𝐹 (𝑥(𝑖) − 𝐹(𝑥(𝑖−1)))       𝑎𝑛𝑑 𝐹(𝑥(0)) = 0,   𝐹(𝑥(𝑛+1)) = 1 

By substituting its cdf specified in Eq. (2), for 𝐹(𝑥(𝑖)) in the previous equation, this function can be produced 

for the new mixture distribution (MEGD). 

𝑃(𝜆, 𝜃) =
1

𝑛 + 1
∑ log(𝑄𝑖)

𝑛+1

𝑖=1

− log((𝜆 + 1))                                                                                                            (16) 

𝑄𝑖 = 𝜆𝜃
2{𝑥(𝑖−1)

2 𝑒−𝜃𝑥(𝑖−1) − 𝑥(𝑖)
2 𝑒−𝜃𝑥(𝑖)} + 𝜆𝜃2{𝑥(𝑖−1)𝑒

−𝜃𝑥(𝑖−1) − 𝑥(𝑖)𝑒
−𝜃𝑥(𝑖)} + {𝑒−𝜃𝑥(𝑖−1) − 𝑒−𝜃𝑥(𝑖)} 

By solving the following equation and maximizing in Eq. (16), we may determine the MPS estimations. 

𝑃(𝜆, 𝜃)

𝜕𝜃
=

1

𝑛 + 1
∑

1

𝑄𝑖

𝜕𝑄𝑖
𝜕𝜃

𝑛+1

𝑖=1

= 0 

𝑃(𝜆, 𝜃)

𝜕𝜆
=

1

𝑛 + 1
∑

1

𝑄𝑖

𝜕𝑄𝑖
𝜕𝜆

𝑛+1

𝑖=1

−
1

(𝜆 + 1)
= 0 

where 
𝜕𝑄𝑖
𝜕𝜃

= 𝜆𝜃{𝑥(𝑖−1)
2 𝑒−𝜃𝑥(𝑖−1) − 𝑥(𝑖)

2 𝑒−𝜃𝑥(𝑖)} + 𝜆{𝑥(𝑖−1)𝑒
−𝜃𝑥(𝑖−1) − 𝑥(𝑖)𝑒

−𝜃𝑥(𝑖)} 

𝜕𝑄𝑖
𝜕𝜆

= 𝜃2{𝑥(𝑖−1)
2 𝑒−𝜃𝑥(𝑖−1) − 𝑥(𝑖)

2 𝑒−𝜃𝑥(𝑖)} + 𝜃{𝑥(𝑖−1)𝑒
−𝜃𝑥(𝑖−1) − 𝑥(𝑖)𝑒

−𝜃𝑥(𝑖)} 

 

14. CRAMER-VON-MISES METHOD 

In 1971, MacDonald proposed the Cramer-von-Mises technique [6]. Reduce the function is the concept 

behind this approach. 

𝐶 =
1

12𝑛
∑{𝐹(𝑥(𝑖); 𝜆, 𝜃) −

2𝑖 − 1

2𝑛
}
2𝑛

𝑖=1

                                                                                                                        (17) 

By substituting its cdf specified in Eq. (2), for 𝐹(𝑥(𝑖))in the previous equation, this function can be produced 

for the new mixture distribution (MEGD). 

𝐶 =
1

12𝑛
∑{(1 +

𝜆𝜃𝑥(𝑖)
(𝜆 + 1)

(
𝜃𝑥(𝑖)

2
+ 1)) 𝑒−𝜃𝑥(𝑖) −

2𝑖 − 1

2𝑛
}

2𝑛

𝑖=1

                                                                               (18) 

We can determine the CVM estimates by maximizing in Eq. (18), by solving the following equations. 
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𝐶(𝜆, 𝜃)

𝜕𝜃
=∑{(1 +

𝜆𝜃𝑥(𝑖)
(𝜆 + 1)

(
𝜃𝑥(𝑖)

2
+ 1)) 𝑒−𝜃𝑥(𝑖) −

2𝑖 − 1

2𝑛
}

𝑛

𝑖=1

   = 0 

𝐶(𝜆, 𝜃)

𝜕𝜆
=∑{(1 +

𝜆𝜃𝑥(𝑖)
(𝜆 + 1)

(
𝜃𝑥(𝑖)

2
+ 1)) 𝑒−𝜃𝑥(𝑖) −

2𝑖 − 1

2𝑛
}

𝑛

𝑖=1

   = 0 

Eq’s. (11) and (12) provide 𝜁𝑖
(1)(𝜆, 𝜃) 𝑎𝑛𝑑 𝜁𝑖

(2)(𝜆, 𝜃), respectively.  

 

15. METHOD FOR ANDERSON-DARLING 

 

The method of Anderson-darling estimation was introduced by [1] in the context of statistical tests. By 

adapting to the new mixture distribution model (MEGD), the Anderson-darling estimates (ADEs) of 𝜆 𝑎𝑛𝑑 𝜃 

, the function is given by 

𝐴(𝜆, 𝜃) = −𝑛 −
1

𝑛
∑(2𝑖 − 1)

𝑛

𝑖=1

{log (𝐹(𝑥(𝑖); 𝜆, 𝜃)) + log (1 − 𝐹(𝑥(𝑖); 𝜆, 𝜃))}                                                 (19) 

Thus, the Anderson-Darling estimates can be obtained by solving the following equations 

simultaneously
𝐴(𝜆,𝜃)

𝜕𝜆
= 0,  

𝐴(𝜆,𝜃)

𝜕𝜃
= 0 

𝐴(𝜆, 𝜃)

𝜕𝜃
= −

1

𝑛
∑(2𝑖 − 1)

𝑛

𝑖=1

{
𝜁𝑖
(1)(𝜆, 𝜃)

𝐹(𝑥(𝑖); 𝜆, 𝜃)
−

𝜁𝑖
(1)(𝜆, 𝜃)

1 − 𝐹(𝑥(𝑖); 𝜆, 𝜃)
} = 0 

𝐴(𝜆, 𝜃)

𝜕𝜆
= −

1

𝑛
∑(2𝑖 − 1)

𝑛

𝑖=1

{
𝜁𝑖
(2)(𝜆, 𝜃)

𝐹(𝑥(𝑖); 𝜆, 𝜃)
−

𝜁𝑖
(2)(𝜆, 𝜃)

1 − 𝐹(𝑥(𝑖); 𝜆, 𝜃)
} = 0 

The value of 𝜁𝑖
(1)(𝜆, 𝜃) 𝑎𝑛𝑑 𝜁𝑖

(2)(𝜆, 𝜃) are provided in Eq’s. (11) and (12), in that order.  

 

16. ESTIMATION OF PARAMETERS 

The new mixed distribution (MEGD) parameter's maximum likelihood estimates and Fisher's 

information matrix are provided in this section. 

 

16.1 Maximum likelihood estimation (MLE) and fisher’s information matrix  

Consider 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 be a random sample of size n from the new mixture distribution (MEGD) 

with parameter 𝛼, 𝜃 the likelihood function, which is defined as 

𝐿 = (𝑥; 𝜆, 𝜃) =∏𝑓(𝑥𝑖; 𝜆, 𝜃)

𝑛

𝑖=1

 

𝐿 =∏
𝜃

𝜆 + 1
(
1

2
𝜆𝜃2𝑥𝑖

2 + 1) 𝑒−𝜃𝑥𝑖

𝑛

𝑖=1

 

Then, the log-likelihood function is given 

ℓ = log 𝐿 = 𝑛 log 𝜃 − 𝑛 log(𝜆 + 1) + 𝑛 log∑(
1

2
𝜆𝜃2𝑥𝑖

2 + 1) − 𝜃∑𝑥𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

Differentiating with respect to 𝜃 𝑎𝑛𝑑 𝜆, we get 

𝜕 log 𝐿

𝜕𝜃
=
𝑛

𝜃
+∑(

(𝜆𝜃𝑥𝑖
2)

(
1
2
𝜆𝜃2𝑥𝑖

2 + 1)
)

𝑛

𝑖=1

−∑𝑥𝑖

𝑛

𝑖=1

= 0                                                                                                   (20) 

𝜕 log 𝐿

𝜕𝜆
= −

𝑛

(𝜆 + 1)
+∑(

(
1
2
𝜃2𝑥𝑖

2)

(
1
2
𝜆𝜃2𝑥𝑖

2 + 1)
)

𝑛

𝑖=1

= 0                                                                                                   (21) 

The maximum likelihood estimate of the parameters for the new mixture distribution is provided by Eq’s. 

(20) and (21). The equation, however, cannot be solved analytically, so they used R programming and a data 

set to solve it numerically.  

The asymptotic normality results are used to derive the confidence interval. Given that if 𝜆̂ = (𝜃̂, 𝜆̂) 
represents the MLE of 𝜆 = (𝜃, 𝜆), the results can be expressed as follows: 

√𝑛(𝜆̂ − 𝜆) → 𝑁2(0, 𝐼
−1(𝜆)) 

In this case, 𝐼(𝜆)represents Fisher's Information Matrix. 
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𝐼(𝜆) = −
1

𝑛

(

 
 
𝐸 (

𝜕2 log 𝐿

𝜕𝜃2
) 𝐸 (

𝜕2 log 𝐿

𝜕𝜃𝜕𝜆
)

𝐸 (
𝜕2 log 𝐿

𝜕𝜆𝜕𝜃
) 𝐸 (

𝜕2 log 𝐿

𝜕𝜆2
)
)

 
 

 

(
𝜕2 log 𝐿

𝜕𝜃2
) =

𝑛

𝜃2
+∑(

𝜆𝑥𝑖
2 (
1
2
𝜆𝜃2𝑥𝑖

2 + 1 − 𝜆𝜃2𝑥𝑖
2)

(
1
2
𝜆𝜃2𝑥𝑖

2 + 1)
2 )

𝑛

𝑖=1

 

(
𝜕2 log 𝐿

𝜕𝜆2
) =

𝑛

(𝜆 + 1)2
−∑(

1
4
𝜃4𝑥𝑖

4

(
1
2
𝜆𝜃2 + 1)

2)

𝑛

𝑖=1

 

(
𝜕2 log 𝐿

𝜕𝜃𝜕𝜆
) =∑(

𝑥𝑖
2 (
1
2
𝜆2𝜃4𝑥𝑖

4 + 1 − 2𝜆𝜃2𝑥𝑖
2 − 𝜆𝜃2𝑥𝑖

2)

(
1
2
𝜆𝜃2𝑥𝑖

2 + 1)
4 )

𝑛

𝑖=1

 

(
𝜕2 log 𝐿

𝜕𝜆𝜕𝜃
) = −∑(

𝑥𝑖
2𝜃2 (

1
4
𝜆2𝜃4𝑥𝑖

4 + 1)

(
1
2
𝜆𝜃2𝑥𝑖

2 + 1)
4 )

𝑛

𝑖=1

 

 

17. SIMULATION 

This part uses a simulation study to evaluate the effectiveness and accuracy of the new mixture 

distribution's (MEGD) parameter estimation technique. The average bias (AB), average mean square error 

(AMSE), and parameter space 𝜉 = (𝜆𝜃), are estimated. 

𝐴𝐵 =
1

𝑁
∑(𝜉𝑖̂ − 𝜉)

𝑁

𝑖=1

              𝑀𝑆𝐸𝑠 =
1

𝑁
∑(𝜉𝑖̂ − 𝜉)

2
𝑁

𝑖=1

        

Five different methods were used to estimate the parameters of the two-parameter new mixed distribution 

(MEGD). Moreover, the Kolmogorov-Smirnov (KS) test can be expressed as = 𝑚𝑎𝑥 |𝐹̂(𝑥(𝑖)) − (
𝑖

𝑛+1
)|. 

Table 1 lists the size of the samples (100) used in each scenario. Next, the average biassed (AB) and mean 

square error (MSE) were used to compare the parameters and approaches. 

 

Table 1. A summary of the simulation's results. 

n Method 𝝀̂ 𝜽̂ 𝑨𝑩(𝝀̂) AMSE(𝝀̂) 𝑨𝑩(𝜽̂) 𝑨𝑴𝑺𝑬(𝜽̂) 

 

 

 

100 

LSE 9.999932 0.8010688 NA 0.2994652 -1.893048 0.2994652 

WLS 5.781467 1.05995 NA 153.4519 6.814661 153.4519 

MPS 1.5 2.0 0.25619 NA 3.628930 10.62661 

CVM 13987930 1.837299 - - 2.807808 10.41995 

AD 6.546030 1.225795 2.808634 92151944 2.808634 10.15757 

KS 0.1099256 0.6001768  
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Figure 1. Pdf and Cdf plot of the New distribution (MEGD) 

 
Figure 2.Survival and Hazard function plot of the New distribution (MEGD) 

 
Figure 3. Revers hazard and Cumulative hazard function plot of the New distribution (MEGD) 
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Figure 4. Odds rate and Quantial function plot of the New distribution (MEGD) 

 

18. APPLICATIONS 

Dat set 1: This data includes the life expectancy (in years) of forty patients with leukemia, a blood 

malignancy, from one of Saudi Arabia's Ministry of Health facilities, as published in (25). This real 

information is 

0.315 0.496 0.616 1.145 1.208 1.263 1.414 2.025 2.036 2.162 

2.211 2.370 2.532 2.693 2.805 2.910 2.912 3.192 3.263 3.348 

3.427 3.499 3.534 3.767 3.751 3.858 3.986 4.049 4.244 4.323 

4.381 4.392 4.397 4.647 4.753 4.929 4.973 5.074 5.381 

Data set 2: The data under consideration are the life times of 20 leukemia patients who were treated by a 

certain drug (20). The data are 

1.013 1.034 1.109 1.169 1.226 1.509 1.533 1.563 1.716 1.929 1.965 2.061 2.344 2.546 

2.626 2.778 2.951 3.413 4.118 5.136 

The Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), Akaike Information Criteria 

Corrected (AICC), and −2 log 𝐿.are used to compare the goodness of fit of the fitted distribution. 

The following formula can be used to determine AIC, BIC, AICC, and −2 log 𝐿.. 

𝐴𝐼𝐶 = 2𝑘 − 2 log 𝐿 , 𝐵𝐼𝐶 = 𝑘 log𝑛 − 2 log 𝐿  𝑎𝑛𝑑 𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

(𝑛 − 𝑘 − 1)
 

Where, 𝑘 = number of parameters, n sample size and −2 log 𝐿 is the maximized value of loglikelihood 

function. 

Table 2. MLEs of the fitted distribution for the provided data set 1 are AIC, BIC, AICC, and −2 log 𝐿. 

Distribution ML Estimates SE -2𝐥𝐨𝐠 𝑳 AIC BIC AICC 

New mixture of exponential and 

gamma distribution 

𝜆̂ = 1.75028 

𝜃̂ = 0.99031  

0.87027 

0.12148 

144.0257 148.0257 151.3528 148.3590 

Lindely   𝜃̂ = 0.25770 0.061617 156.5028 158.5028 160.1664 158.6080 

Shanker 𝜃̂ = 0.549721 0.058062 144.7945 155.9545 157.6181 156.0597 
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Rama  𝜃̂ = 1.101465 0.080551 143.3158 154.3158 147.1023 154.4210 

Exponential 𝜃̂ = 0.318938   0.051070 167.1353 169.1353 170.7988 169.0405 

Aradhana 𝜃̂ = 0.750601  0.071081 149.4283 151.4283 153.0918 151.5335 

Akash 𝜃̂ = 0.801683   0.071209 149.0561 151.0561 152.7196 151.1613 

Ishita 𝜃̂ = 0.80668  0.06521 147.9967 149.9967 151.6603 150.1019 

Quasi Lindely 
𝜃̂ = 0.63762 

𝛼̂ = 0.0010 

0.145085 

0.502755 

149.1123 153.1123 156.4394 153.4366 

Quasi Shanker 
𝜃̂ = 0.93565 

𝛼̂ = 21.02154 

0.09713 

57.71126 
147.4368 151.4368 154.8146 151.7611 

Quasi Aradhana 
𝜃̂ = 0.63762 

𝛼̂ = 0.00100 

0.08172 

0.15278 
203.1178 207.1178 210.5049 207.4421 

Quasi Sujatha 
𝜃̂ = 0.86070 

𝛼̂ = 0.00100 

0.09772 

0.40129 
145.2141 149.2141 152.5412 149.5384 

 

Table 3. MLEs of the fitted distribution for the provided data set 2 are AIC, BIC, AICC, and −2 log 𝐿. 

Distribution ML Estimates SE -2𝐥𝐨𝐠 𝑳 AIC BIC AICC 

New mixture of exponential 

and gamma distribution 

𝜆̂ = 5.85527 

𝜃̂ = 1.29745  

2.89211 

0.51146 

53.59311 57.59311 59.48199 58.34311 

 

Lindely 𝜃̂ = 0.70768  0.12007 64.02158 66.02158 66.96602 66.2438 

Shanker 𝜃̂ = 0.71243      0.10777 63.08856 65.08856 66.033 65.3107 

Rama  𝜃̂ = 1.37842 0.14153 62.41991 64.41991 65.36435 64.6421 

Exponential 𝜃̂ = 0.44632     0.10239 68.65501 70.65501 71.59945 70.8772 

Aradhana 𝜃̂ = 0.9855      0.13594 60.60053 62.60053 63.54497 62.8227 

Akash 𝜃̂ = 0.02970    0.13179 62.69158 64.69158 65.63602 64.9138 

Ishita 𝜃̂ = 0.99759     0.11340 62.74297 64.74297 65.68741 64.9651 

Quasi Lindely   
𝜃̂ = 0.89223 

𝛼̂ = 0.00100 

0.12540 

(     NaN) 

57.9066 61.9066 63.79554 62.6566 

Quasi Aradhana 
𝜃̂ = 0.89237 

𝛼̂ = 0.00100 

0.19067 

0.45574 
84.24628 88.2462 90.1351 88.9962 

Quasi Sujatha 
𝜃̂ = 1.17372 

𝛼̂ = 0.00100 

0.12441 

(   NaN) 
55.9815 59.9815 61.8703 60.7315 

 

19. RESULTS AND DISCUSSION 

 Table 1 shows different methods to estimate the parameters of the new distribution as a mixture of 

exponential and gamma of the simulation's results. Tables 2 and 3 show that the MEGD distribution has 

smaller AIC, BIC, AICC, and values than the new distribution, which is a mixture of exponential and gamma 

distribution, Lindely, Shanker, Rama, Exponential, Aradhana, Akash, Ishita, distribution, and Lindely, 

Aradhana, Sujatha, Shanker Quasi distribution. This implies that the data is better fitted by the new mixture 

distribution (MEGD). As a result, the combination of exponential and gamma distributions offers a better fit 

than the other distributions. 



              ISSN: 2704-1077 eISSN 2704-1069 

International Journal of Mathematics, Statistics, and Computer Science 

274 

 

20. CONCLUSION 

The new mixture of exponential and gamma distribution (MEGD) is presented in this article as a 

model for lifetime data. The article contains several exceptional cases that it possesses. There have been 

derived several statistical properties of the suggested distribution. Including reliability analysis, moments, the 

moment-generating function, Bonferroni and Lorenz curves, entropy, as well as order statistics. Using the 

maximum likelihood estimation method, the unknown parameters for a new mixture distribution were 

inferred. The estimates have been assessed in several simulated investigations. Utilizing the maximum 

likelihood method to estimate the parameters results in a satisfactory performance. By using several 

goodness-of-fit criteria, the results show that the new mixture of exponential and gamma distributions 

(MEGD) performs better than other well-known distributions. 
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